Shap解释LSTM时序预测模型(全套代码分享)

用LSTM模型对从网上下载的数据进行预测,用12个时间步预测下个时间步的单个值,每个时间步有7个特征,所以是多步预测单步的模型,最后用shap库的DeepExplainer解释器(适用于深度学习模型,基于模型的梯度计算shap值)解释模型,并绘制自变量重要性汇总图、单变量依赖图等8类图片。

数据明:

源数据在“ETTh2.csv “文件中,如下所示,B列到H列是变量(共7个自变量),滑动窗口为12,序列长度为7,用12×7个数据预测下个时刻的OT(油温)。

源代码使用说明:

代码文件是“LSTM-Shap.py“,建议用pycharm打开,运行结束后可以看到所有的图片和变量。建模流程说明如下:

第一步 导入python第三方库

首先保证你安装了下图中的库,如果运行报错,可以查看各个库的版本是否太低,大于等于我用的版本就可以

# 加载数据
import to
机器学习中,特别是在深度学习领域,LSTM(长短时记忆网络)常用于序列数据分析,如时间序列预测。Shapley Additive Explanations (SHAP) 是一种流行的全局可解释性方法,它能够量化每个特征对模型预测结果的影响程度。 当你想要使用`shap`库解释一个基于LSTM的回归模型时,首先需要安装必要的库,如`tensorflow`, `keras`, 和 `shap`。下面是一个简化的Python代码示例: ```python # 导入所需库 import numpy as np import tensorflow as tf from keras.models import Sequential from keras.layers import LSTM, Dense from sklearn.preprocessing import StandardScaler from shap import GradientExplainer # 随机生成数据样本 n_samples = 1000 timesteps = 50 input_dim = 10 output_dim = 1 X = np.random.rand(n_samples, timesteps, input_dim) y = np.random.rand(n_samples, output_dim) # 数据预处理 scaler = StandardScaler() X_scaled = scaler.fit_transform(X) y_scaled = scaler.transform(y.reshape(-1, 1)).reshape(-1) # 构建LSTM模型 model = Sequential([ LSTM(64, return_sequences=True), LSTM(32), Dense(output_dim) ]) model.compile(optimizer='adam', loss='mse') # 使用均方误差作为损失函数 # 训练模型 model.fit(X_scaled, y_scaled, epochs=50, batch_size=32) # 创建SHAP explainer explainer = GradientExplainer(model.predict, X_scaled[:1]) # 使用部分样本来初始化 # 获取单个预测并解释其影响 prediction = model.predict(X_scaled[0].reshape(1, -1)) shap_values = explainer.shap_values(X_scaled[0]) # 可视化结果 import shap shap.initjs() shap.force_plot(explainer.expected_value[0], shap_values[0], X_scaled[0]) # 打印相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值