用LSTM模型对从网上下载的数据进行预测,用12个时间步预测下个时间步的单个值,每个时间步有7个特征,所以是多步预测单步的模型,最后用shap库的DeepExplainer解释器(适用于深度学习模型,基于模型的梯度计算shap值)解释模型,并绘制自变量重要性汇总图、单变量依赖图等8类图片。
数据说明:
源数据在“ETTh2.csv “文件中,如下所示,B列到H列是变量(共7个自变量),滑动窗口为12,序列长度为7,用12×7个数据预测下个时刻的OT(油温)。
源代码使用说明:
代码文件是“LSTM-Shap.py“,建议用pycharm打开,运行结束后可以看到所有的图片和变量。建模流程说明如下:
第一步 导入python第三方库
首先保证你安装了下图中的库,如果运行报错,可以查看各个库的版本是否太低,大于等于我用的版本就可以
# 加载数据
import to