Shap解释Transformer多分类模型(全套代码分享)

最近看的很多论文中都用到了Shap解释去分析机器学习模型,用来评估变量的重要性等等,于是产生了用Shap分析刚训练好的Transformer模型的想法,找了半天居然没有这方面的论文,最后认真研究了Shap库的官方文档,发现思路可行,思路分享如下

用Transformer模型对从nhanes数据库中下载的数据进行多分类,用了4层encoder和1层全连接层,之后对模型进行评估,计算测试集准确率、召回率、f1分数等指标,最后用shap解释模型,并绘制自变量重要性汇总图、单变量依赖图等8类图片。

数据明:

源数据在“mydata.xlsx“文件中,如下所示,A列到O列是自变量(共15个自变量),第一行是变量名称,数据是从nhanes数据库中下载的,不知道含义的可以在网站中搜索(NHANES Variables (clinicalscientists.cn))。P列是结局变量,0或1或2,三分类。从网站下载的数据只有二分类,这里把一部分的1直接改成了2,强行变为多分类,所以训练集的准确率不高,替换为自己的数据集就好了。

源代使用明:

代码文件是“transformer做卒中分类.py“,建议用pycharm打开,运行结束后可以看到所有的图片和变量。建模流程说明如下:

第一步 入python第三方

首先保证你安装了下图中的库&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值