TensorFlow入门教程(四):MNIST手写数字识别简单版

一、  MNIST数据集简介

   MNIST数据集官网:http://yann.lecun.com/exdb/mnist/

  • 下载下来的数据集被分成训练数据和测试数据两部分,其中训练数据有60000个,测试数据有10000个
  • 每一张图片包含28*28个像素,我们把这一个数组展开成一个向量,长度是28*28=784。因此在MNIST训练数据集中mnist.train.images是一个形状为 [60000,784]的张量,第一个维度数字用来索引图片,第二个维度数字用来索引每张图片中的像素点。图片里的某个像素的强度值介于0-1之间。

  • MNIST数据集的标签是介于0-9的数字,我们要把标签转化为"one-hot vectors"。一个one-hot向量除了某一位数字是1以外,其余维度数字都是0,比如标签0将表示为([1,0,0,0,0,0,0,0,0,0]),标签3将表示为([0,0,0,1,0,0,0,0,0,0])。因此,mnist.train.labels 是一个[60000, 10]的数字矩阵。

二、  神经网络构建

由于每张图片的像素个数为784,所以,输入层为784,先设计一个一层网络,0-9共有10个分类,所以,输出层有10个神经元,网络结构如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值