【机器学习-周志华】学习笔记-第一章

记录第一遍没看懂的
记录觉得有用的
其他章节:
        第一章
        第三章
        第五章
        第六章
        第七章
        第八章
        第九章
        第十章
        十一章
        十二章
        十三章
        十四章
        十五章
        十六章

1.4 归纳偏好公式解析

公式(1.1)解析

Alt

        其中,E表示期望,下标ote表示“训练集外误差”(Out of Traing set Error),那么Eote(La|X,f)表示的就是给定数据集和真实目标函数的情况下,算法La的训练集外误差的计算方式
        范围x∈X-X,即样本空间数据减去训练集数据,也就是“训练集外”,那么P(x)就表示取到训练集外数据x的概率;指示函数中,h(x)≠f(x)表示假设值不等于真实值,即预测错误时,指示函数取1;P(h|X,La)表示已知数据集,通过算法得到的假设(算法内部有很多随机因素影响,h仍然是个概率事件)。
        简言之,就是数据集本身的概率乘以预测的对错乘以模型被得到的概率,你用到的数据和模型的所有可能性加起来,就是训练集外误差的期望。

公式(1.2)解析

在这里插入图片描述
        这个公式是对上面(1.1)的一个推导演化,相当于上式左右都求和。相当于假设每个可能的函数f出现的概率是均匀的,对这些可能求和。
        由于后续中,只有指示函数(h(x)≠f(x))中出现了f,因此,把∑f移到后面,∑h同理。
        X在上式中已经描述,是整个特征空间的样本,而|X|就表达特征空间中所有点的数量,对于二分类问题,空间中的每一个组合,都有两种可能,也就是2|X|,表示这个空间中,所有可能性的数量。我们的指示函数是在预测错误时取1,考虑到是按均匀分布,所以是1/2的概率。这样的话,最后一项相当于运算出来的一个常数。
        不论什么分布,所有的h的概率加起来一定是1,即∑h那一项实际等于1
在这里插入图片描述
        这样综合推导,得到公式(1.2),可以看出,最后的公式已经与La无关了。(p.s.别忘了我们的假设,f按均匀分布,这个假设是不客观的)。
        这个定理的意义,在后文也揭示了:脱离具体问题,空泛地谈论"什么学习算法更好"毫无意义
在这里插入图片描述

数学真的看得脑壳痛QWQ

### 关于周志华机器学习》(西瓜书)第二章的学习笔记 #### 模型评估与选择概述 模型评估与选择是机器学习领域的重要组成部分,旨在通过合理的方法评价不同模型的表现并挑选最优者。这一过程不仅涉及如何衡量单个模型的好坏,还包括怎样对比多个候选方案以做出最佳决策。 #### 偏差、方差和噪声的概念解析 偏差度量了学习算法的期望预测与实际结果之间的差距,反映了算法自身的拟合精度;方差描述的是相同规模训练集变化引起的学习效果波动情况,体现了数据扰动带来的影响;而噪声则设定了给定任务下所有可能采用的学习方法能达到的最佳预期泛化误差界限,揭示了问题本身固有的复杂性和挑战性[^2]。 #### 性能度量指标——P-R图及其应用 为了更直观地展示各类分类器的工作特性,通常会绘制精确率-召回率(Precision-Recall, P-R)曲线来辅助分析。当面对多组实验结果时,可以通过观察这些图形相互间的位置关系来进行优劣评判:如果某条曲线始终位于另一条之上,则表明前者具有更好的整体表现;而对于那些存在交点的情况,则需进一步计算各自下方区域面积大小作为判断依据之一。此外,“平衡点”作为一种特殊的性能测度,在特定条件下也能提供有价值的参考信息[^3]。 #### 偏差-方差分解理论简介 该理论为理解学习算法的一般化能力提供了框架性的指导思路,通过对平均测试错误率实施拆分操作,可以深入剖析导致过拟合现象背后的原因所在,并据此探索改进措施的方向。具体而言,总误差由三部分构成——不可约减误差点(即噪声)、平方形式表达出来的偏差项以及线性累加而成的方差成分[^4]。 ```python import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import precision_recall_curve, auc def evaluate_model_performance(model, X, y): """ 计算并返回PR曲线下面积(AUC),用于量化模型的整体性能。 参数: model (object): 已经训练好的分类模型实例。 X (array-like of shape (n_samples, n_features)): 测试特征矩阵。 y (array-like of shape (n_samples,)): 对应的真实标签向量。 返回: float: PR AUC得分。 """ # 划分训练集/验证集 X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2) # 使用训练集拟合模型 model.fit(X_train, y_train) # 获取验证集中各观测对应的概率估计值 probas_pred = model.predict_proba(X_val)[:, 1] # 绘制PR曲线并求得AUC分数 precisions, recalls, _ = precision_recall_curve(y_val, probas_pred) pr_auc_score = auc(recalls, precisions) return pr_auc_score ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值