EM算法解决三硬币问题

EM算法解决三硬币问题

1.问题介绍

假如有三个硬币,分别记做A,B,C,这些硬币正面出现的概率分别是 π \pi π, p p p, q q q。进行如下掷硬币实验:先掷硬币A,根据其结果选出硬币B或硬币C,正面选择硬币B,反面选择硬币C。然后掷选出的硬币,掷硬币的结果,出现正面记作1,反面记作0,独立重复n次实验。

2.EM算法简介

输入观测数据 Y Y Y,隐变量数据 Z Z Z,联合分布 P ( Y , Z ∣ θ ) P(Y,Z|\theta) P(Y,Zθ),条件分布 P ( Z ∣ Y , θ ) P(Z|Y,\theta) P(ZY,θ),输出模型参数 θ \theta θ.
(1)选择参数的初值 θ ( 0 ) \theta^{(0)} θ(0),开始迭代
(2) E E E步:记 θ ( i ) \theta^{(i)} θ(i)为第 i i i次迭代参数 θ \theta θ的估计值,在第 i + 1 i+1 i+1次迭代的 E E E步,计算
Q ( θ , θ ( i ) ) = E Z [ l o g P ( Y , Z ∣ θ ) ∣ Y , θ ( i ) ] = ∑ Z l o g P ( Y , Z ∣ θ ) P ( Z ∣ Y , θ ( i ) ) \begin{aligned} Q(\theta,\theta^{(i)}) &=E_Z[logP(Y,Z|\theta)|Y,\theta^{(i)}]\\ &=\sum_ZlogP(Y,Z|\theta)P(Z|Y,\theta^{(i)}) \end{aligned} Q(θ,θ(i))=EZ[logP(Y,Zθ)Y,θ(i)]=ZlogP(Y,Zθ)P(ZY,θ(i))
这里, P ( Z ∣ Y , θ ( i ) ) P(Z|Y,\theta^{(i)}) P(ZY,θ(i))是在给定观测数据 Y Y Y和当前的参数估计 θ ( i ) \theta^{(i)} θ(i)下隐变量数据 Z Z Z的条件概率分布
(3) M M M步:求使 Q ( θ , θ ( i ) ) Q(\theta,\theta^{(i)}) Q(θ,θ(i))极大化的 θ \theta θ,确定第 i + 1 i+1 i+1次迭代的参数估计值 θ ( i + 1 ) \theta^{(i+1)} θ(i+1)
θ ( i + 1 ) = a r g m a x θ Q ( θ , θ ( i ) ) \theta^{(i+1)} = \mathop{argmax}\limits_{\theta}Q(\theta,\theta^{(i)}) θ(i+1)=θargmaxQ(θ,θ(i))
(4)重复(2)和(3)直到收敛。

3.EM算法解决三硬币问题

(1)首先选取参数的初值,记作 θ ( 0 ) = ( π ( 0 ) , p ( 0 ) , q ( 0 ) ) \theta^{(0)} = (\pi^{(0)},p^{(0)},q^{(0)}) θ(0)=(π(0),p(0),q(0))
(2) E E E步,计算在模型参数 π ( i ) , p ( i ) , q ( i ) \pi^{(i)},p^{(i)},q^{(i)} π(i),p(i),q(i)下观测数据 y j y_j yj来自掷硬币B的概率
μ j ( i + 1 ) = π ( i ) ( p ( i ) ) y j ( 1 − p ( i ) ) 1 − y j π ( i ) ( p ( i ) ) y j ( 1 − p ( i ) ) + ( 1 − π ( i ) ) ( q ( i ) ) y j ( 1 − q ( i ) ) 1 − y j \mu_j^{(i+1)} = \frac{\pi^{(i)}(p^{(i)})^{y_j}(1-p^{(i)})^{1-y_j}}{\pi^{(i)}(p^{(i)})^{y_j}(1-p^{(i)}) + (1-\pi^{(i)})(q^{(i)})^{y_j}(1-q^{(i)})^{1-y_j}} μj(i+1)=π(i)(p(i))yj(1p(i))+(1π(i))(q(i))yj(1q(i))1yjπ(i)(p(i))yj(1p(i))1yj
(3) M M M步,计算模型参数的新估计值
π ( i + 1 ) = 1 n ∑ j = 1 n μ j ( i + 1 ) \pi^{(i+1)} = \frac{1}{n}\sum_{j=1}^{n}\mu_j^{(i+1)} π(i+1)=n1j=1nμj(i+1)
p ( i + 1 ) = ∑ j = 1 n μ j ( i + 1 ) y j ∑ j = 1 n μ j i + 1 p^{(i+1)} = \frac{\mathop{\sum}\limits_{j=1}^n\mu_j^{(i+1)}y_j}{\mathop{\sum}\limits_{j=1}^n\mu_j^{i+1}} p(i+1)=j=1nμji+1j=1nμj(i+1)yj
q i + 1 = ∑ j = 1 n ( 1 − μ j ( i + 1 ) ) y j ∑ j = 1 n ( 1 − μ j ( i + 1 ) ) q^{i+1} = \frac{\mathop{\sum}\limits_{j=1}^n(1-\mu_j^{(i+1)})y_j}{\mathop{\sum}\limits_{j=1}^n(1-\mu_j^{(i+1)})} qi+1=j=1n(1μj(i+1))j=1n(1μj(i+1))yj
(4)重复(2)(3)步的迭代直到收敛

以上内容均参考李航老师的《统计学习方法》一书

4.推导

《统计学习方法》一书略去了三硬币问题的推导。然而,给出的解决算法中E步和M步所计算的内容与EM算法形式上的E步和M步的计算内容有些出入,因此,有些地方需要更清楚的解释。
这个问题中,我们设定的隐变量是什么?我认为,隐变量 Z Z Z应该代表了A硬币是正面或反面,正面是1,反面是0。
为了便于后边的论述,我们假设 θ = ( π , p , q ) \theta =(\pi,p,q) θ=(π,p,q)
首先理解E步。为了理解E步的内容,我们从 Q Q Q函数入手。注意到:
Q ( θ , θ ( i ) ) = ∑ Z l o g P ( Y , Z ∣ θ ) P ( Z ∣ Y , θ ( i ) ) Q(\theta,\theta^{(i)}) = \sum_ZlogP(Y,Z|\theta)P(Z|Y,\theta^{(i)}) Q(θ,θ(i))=ZlogP(Y,Zθ)P(ZY,θ(i))
观察EM算法 E E E步的公式,我们首先需要得到观测数据与隐变量在 θ \theta θ条件下的联合分布 P ( Y , Z ∣ θ ) P(Y,Z|\theta) P(Y,Zθ)。如何求联合概率分布?基于以下公式
P ( Y , Z ∣ θ ) = P ( Z ∣ θ ) P ( Y ∣ Z , θ ) P(Y,Z|\theta) = P(Z|\theta)P(Y|Z,\theta) P(Y,Zθ)=P(Zθ)P(YZ,θ)
假设我们抽取的n个样本相互独立,显然我们每次掷硬币A都是独立的,即 z j z_j zj之间相互独立。每次观测的数据 y j y_j yj的值也仅仅与 z j z_j zj有关,于是我们可以得到
P ( Z ∣ θ ) = ∏ j = 1 n P ( z j ∣ θ ) = ∏ j = 1 n π z j ( 1 − π ) 1 − z j P(Z|\theta) = \prod_{j=1}^n P(z_j|\theta)=\prod_{j=1}^n\pi^{z_j}(1-\pi)^{1-z_j} P(Zθ)=j=1nP(zjθ)=j=1nπzj(1π)1zj
其中
P ( z j ∣ θ ) = π z j ( 1 − π ) 1 − z j P(z_j|\theta)=\pi^{z_j}(1-\pi)^{1-z_j} P(zjθ)=πzj(1π)1zj
这个是由于 z z z服从二项分布。 P ( z j = 0 ∣ θ ) = 1 − π P(z_j=0|\theta)=1-\pi P(zj=0θ)=1π P ( z j = 1 ∣ θ ) = π P(z_j=1|\theta) = \pi P(zj=1θ)=π
如何求出 P ( Y ∣ Z , θ ) P(Y|Z,\theta) P(YZ,θ)?当 z j z_j zj已经确定,我们也就知道投掷哪枚硬币了。这样我们根据 z j z_j zj的取值可以写出以下的内容。 P ( y j = 1 ∣ z j = 1 , θ ) = p P(y_j=1|z_j=1,\theta)=p P(yj=1zj=1,θ)=p P ( y j = 1 ∣ z j = 0 , θ ) = q , P ( y j = 0 ∣ z j = 1 , θ ) = 1 − p P(y_j=1|z_j=0,\theta)=q,P(y_j=0|z_j=1,\theta)=1-p P(yj=1zj=0,θ)=q,P(yj=0zj=1,θ)=1p P ( y j = 0 ∣ z j = 0 , θ ) = 1 − q P(y_j=0|z_j=0,\theta)=1-q P(yj=0zj=0,θ)=1q。对于仅有的这四种情况,我们可以用一个公式包含,即
P ( y j ∣ z j , θ ) = ( p z j q ( 1 − z j ) ) y j ( ( 1 − p ) z j ( 1 − q ) ( 1 − z j ) ) ( 1 − y j ) P(y_j|z_j,\theta)=(p^{z_j}q^{(1-z_j)})^{y_{j}}((1-p)^{z_j}(1-q)^{(1-z_j)})^{(1-y_j)} P(yjzj,θ)=(pzjq(1zj))yj((1p)zj(1q)(1zj))(1yj)
因此,由独立性假设,我们可以得到
P ( Y ∣ Z , θ ) = ∏ j = 1 n ( p z j q ( 1 − z j ) ) y j ( ( 1 − p ) z j ( 1 − q ) ( 1 − z j ) ) ( 1 − y j ) P(Y|Z,\theta)=\prod_{j=1}^n(p^{z_j}q^{(1-z_j)})^{y_{j}}((1-p)^{z_j}(1-q)^{(1-z_j)})^{(1-y_j)} P(YZ,θ)=j=1n(pzjq(1zj))yj((1p)zj(1q)(1zj))(1yj)
所以,由 P ( Y , Z ∣ θ ) = P ( Z ∣ θ ) P ( Y ∣ Z , θ ) P(Y,Z|\theta) = P(Z|\theta)P(Y|Z,\theta) P(Y,Zθ)=P(Zθ)P(YZ,θ) P ( Z ∣ θ ) P(Z|\theta) P(Zθ) P ( Y ∣ Z , θ ) P(Y|Z,\theta) P(YZ,θ)相乘,整理,得到
P ( Y , Z ∣ θ ) = ∏ j = 1 n [ π z j p z j y j ( 1 − p ) z j ( 1 − y j ) ] [ ( 1 − π ) 1 − z j q ( 1 − z j ) y j ( 1 − q ) ( 1 − z j ) ( 1 − y j ) ] P(Y,Z|\theta) = \prod_{j=1}^n[\pi^{z_j}p^{z_jy_j}(1-p)^{z_j(1-y_j)}][(1-\pi)^{1-z_j}q^{(1-z_j)y_j}(1-q)^{(1-z_j)(1-y_j)}] P(Y,Zθ)=j=1n[πzjpzjyj(1p)zj(1yj)][(1π)1zjq(1zj)yj(1q)(1zj)(1yj)]
对上边的公式对 Z Z Z求和,也就是对每一个乘积项将 z j = 0 z_j=0 zj=0 z j = 1 z_j=1 zj=1的情况加起来,我们可以得到
P ( Y ∣ θ ) = ∑ Z P ( Y , Z ∣ θ ) = ∏ j = 1 n [ π p y j ( 1 − p ) 1 − y j + ( 1 − π ) q y j ( 1 − q ) 1 − y j ] P(Y|\theta) = \sum_{Z}P(Y,Z|\theta) = \prod_{j=1}^n[\pi p^{y_j}(1-p)^{1-y_j}+(1-\pi)q^{y_j}(1-q)^{1-y_j}] P(Yθ)=ZP(Y,Zθ)=j=1n[πpyj(1p)1yj+(1π)qyj(1q)1yj]
由于有了 P ( Y , Z ∣ θ ) P(Y,Z|\theta) P(Y,Zθ) P ( Y ∣ θ ) P(Y|\theta) P(Yθ),我们可以得到
P ( Z ∣ Y , θ ) = P ( Y , Z ∣ θ ) P ( Y ∣ θ ) = ∏ j = 1 n [ π z j p z j y j ( 1 − p ) z j ( 1 − y j ) ] [ ( 1 − π ) 1 − z j q ( 1 − z j ) y j ( 1 − q ) ( 1 − z j ) ( 1 − y j ) ] [ π p y j ( 1 − p ) 1 − y j + ( 1 − π ) q y j ( 1 − q ) 1 − y j ] P(Z|Y,\theta) = \frac{P(Y,Z|\theta)}{P(Y|\theta)} =\prod_{j=1}^n\frac{[\pi^{z_j}p^{z_jy_j}(1-p)^{z_j(1-y_j)}][(1-\pi)^{1-z_j}q^{(1-z_j)y_j}(1-q)^{(1-z_j)(1-y_j)}]}{[\pi p^{y_j}(1-p)^{1-y_j}+(1-\pi)q^{y_j}(1-q)^{1-y_j}]} P(ZY,θ)=P(Yθ)P(Y,Zθ)=j=1n[πpyj(1p)1yj+(1π)qyj(1q)1yj][πzjpzjyj(1p)zj(1yj)][(1π)1zjq(1zj)yj(1q)(1zj)(1yj)]
按照EM算法中的需求带入 θ ( i ) \theta^{(i)} θ(i)
P ( Z ∣ Y , θ ( i ) ) = ∏ j = 1 n [ ( π ( i ) ) z j ( p ( i ) ) z j y j ( 1 − p ( i ) ) z j ( 1 − y j ) ] [ ( 1 − π ( i ) ) 1 − z j ( q ( i ) ) ( 1 − z j ) y j ( 1 − q ( i ) ) ( 1 − z j ) ( 1 − y j ) ] [ π ( i ) ( p ( i ) ) y j ( 1 − p ( i ) ) 1 − y j + ( 1 − π ( i ) ) ( q ( i ) ) y j ( 1 − q ( i ) ) 1 − y j ] P(Z|Y,\theta^{(i)}) =\prod_{j=1}^n\frac{[(\pi^{(i)})^{z_j}(p^{(i)})^{z_jy_j}(1-p^{(i)})^{z_j(1-y_j)}][(1-\pi^{(i)})^{1-z_j}(q^{(i)})^{(1-z_j)y_j}(1-q^{(i)})^{(1-z_j)(1-y_j)}]}{[\pi^{(i)} (p^{(i)})^{y_j}(1-p^{(i)})^{1-y_j}+(1-\pi^{(i)})(q^{(i)})^{y_j}(1-q^{(i)})^{1-y_j}]} P(ZY,θ(i))=j=1n[π(i)(p(i))yj(1p(i))1yj+(1π(i))(q(i))yj(1q(i))1yj][(π(i))zj(p(i))zjyj(1p(i))zj(1yj)][(1π(i))1zj(q(i))(1zj)yj(1q(i))(1zj)(1yj)]
至此, Q Q Q函数中所需要的组成部分都计算出来了。我们也就完成了 E E E
李航老师书中的 μ j ( i + 1 ) \mu_j^{(i+1)} μj(i+1)是什么?我们观察上面的公式,可以发现
μ j ( i + 1 ) = P ( z j = 1 ∣ y j , θ ( i ) ) \mu_j^{(i+1)}=P(z_j=1|y_j,\theta^{(i)}) μj(i+1)=P(zj=1yj,θ(i)) 1 − μ j ( i + 1 ) = P ( z j = 0 ∣ y j , θ ( i ) ) 1-\mu_j^{(i+1)}=P(z_j=0|y_j,\theta^{(i)}) 1μj(i+1)=P(zj=0yj,θ(i))
因为使用 μ j ( i + 1 ) \mu_j^{(i+1)} μj(i+1)这个符号,会使得公式变得简单,后边我也会用这个符号说明问题。
接下类我们来理解 M M M步。
θ ( i + 1 ) = a r g m a x θ Q ( θ , θ ( i ) ) = a r g m a x θ ∑ Z l o g P ( Y , Z ∣ θ ) P ( Z ∣ Y , θ ( i ) ) = a r g m a x θ ∑ Z P ( Z ∣ Y , θ ( i ) ) ∑ j = 1 n l o g P ( y j , z j ∣ θ ) = a r g m a x θ ∑ Z P ( Z ∣ Y , θ ( i ) ) ( l o g P ( y 1 , z 1 ∣ θ ) + ∑ j = 2 n l o g P ( y j , z j ∣ θ ) ) = a r g m a x θ ∑ Z P ( Z ∣ Y , θ ( i ) ) l o g P ( y 1 , z 1 ∣ θ ) + ∑ Z P ( Z ∣ Y , θ ( i ) ) ∑ j = 2 n l o g P ( y j , z j ∣ θ ) ) = a r g m a x θ ( P ( z 1 = 0 ∣ Y , θ ( i ) ) l o g P ( y 1 , z 1 = 0 ∣ θ ) + P ( z 1 = 1 ∣ Y , θ ( i ) ) l o g P ( y 1 , z 1 = 1 ∣ θ ) ) ∑ Z ′ P ( Z ′ ∣ Y ′ , θ ) + ∑ Z P ( Z ∣ Y , θ ( i ) ) ∑ j = 2 n l o g P ( y j , z j ∣ θ ) ) = a r g m a x θ ( P ( z 1 = 0 ∣ Y , θ ( i ) ) l o g P ( y 1 , z 1 = 0 ∣ θ ) + P ( z 1 = 1 ∣ Y , θ ( i ) ) l o g P ( y 1 , z 1 = 1 ∣ θ ) ) + ∑ Z P ( Z ∣ Y , θ ( i ) ) ∑ j = 2 n l o g P ( y j , z j ∣ θ ) ) = a r g m a x θ ∑ z 1 ( P ( z 1 ∣ Y , θ ( i ) ) l o g P ( y 1 ∣ θ ) ) + ∑ Z P ( Z ∣ Y , θ ( i ) ) ∑ j = 2 n l o g P ( y j , z j ∣ θ ) ) = a r g m a x θ ∑ z 1 ( P ( z 1 ∣ Y , θ ( i ) ) l o g P ( y 1 ∣ θ ) ) + ∑ z 2 ( P ( z 2 ∣ Y , θ ( i ) ) l o g P ( y 2 ∣ θ ) ) + ∑ Z P ( Z ∣ Y , θ ( i ) ) ∑ j = 3 n l o g P ( y j , z j ∣ θ ) ) = . . . = a r g m a x θ ∑ j = 1 n ∑ z j P ( z j ∣ y j , θ ( i ) ) l o g ( y j , z j ∣ θ ) \begin{aligned} \theta^{(i+1)} &=\mathop{argmax}\limits_{\theta}Q(\theta,\theta^{(i)})\\ &=\mathop{argmax}\limits_{\theta}\sum_ZlogP(Y,Z|\theta)P(Z|Y,\theta^{(i)})\\ &=\mathop{argmax}\limits_{\theta}\sum_ZP(Z|Y,\theta^{(i)})\sum_{j=1}^nlogP(y_j,z_j|\theta)\\ &=\mathop{argmax}\limits_{\theta}\sum_ZP(Z|Y,\theta^{(i)})(logP(y_1,z_1|\theta)+\sum_{j=2}^nlogP(y_j,z_j|\theta))\\ &=\mathop{argmax}\limits_{\theta}\sum_ZP(Z|Y,\theta^{(i)})logP(y_1,z_1|\theta)+\sum_ZP(Z|Y,\theta^{(i)})\sum_{j=2}^nlogP(y_j,z_j|\theta))\\ &=\mathop{argmax}\limits_{\theta}(P(z_1=0|Y,\theta^{(i)})logP(y_1,z_1=0|\theta)+P(z_1=1|Y,\theta^{(i)})logP(y_1,z_1=1|\theta))\sum_{Z'}P(Z'|Y',\theta)+\sum_ZP(Z|Y,\theta^{(i)})\sum_{j=2}^nlogP(y_j,z_j|\theta))\\ &=\mathop{argmax}\limits_{\theta}(P(z_1=0|Y,\theta^{(i)})logP(y_1,z_1=0|\theta)+P(z_1=1|Y,\theta^{(i)})logP(y_1,z_1=1|\theta))+\sum_ZP(Z|Y,\theta^{(i)})\sum_{j=2}^nlogP(y_j,z_j|\theta))\\ &=\mathop{argmax}\limits_{\theta}\sum_{z_1}(P(z_1|Y,\theta^{(i)})logP(y_1|\theta))+\sum_ZP(Z|Y,\theta^{(i)})\sum_{j=2}^nlogP(y_j,z_j|\theta))\\ &=\mathop{argmax}\limits_{\theta}\sum_{z_1}(P(z_1|Y,\theta^{(i)})logP(y_1|\theta))+\sum_{z_2}(P(z_2|Y,\theta^{(i)})logP(y_2|\theta))+\sum_ZP(Z|Y,\theta^{(i)})\sum_{j=3}^nlogP(y_j,z_j|\theta))\\ &=...\\ &=\mathop{argmax}\limits_{\theta}\sum_{j=1}^n\sum_{z_j}P(z_j|y_j,\theta^{(i)})log(y_j,z_j|\theta) \end{aligned} θ(i+1)=θargmaxQ(θ,θ(i))=θargmaxZlogP(Y,Zθ)P(ZY,θ(i))=θargmaxZP(ZY,θ(i))j=1nlogP(yj,zjθ)=θargmaxZP(ZY,θ(i))(logP(y1,z1θ)+j=2nlogP(yj,zjθ))=θargmaxZP(ZY,θ(i))logP(y1,z1θ)+ZP(ZY,θ(i))j=2nlogP(yj,zjθ))=θargmax(P(z1=0Y,θ(i))logP(y1,z1=0θ)+P(z1=1Y,θ(i))logP(y1,z1=1θ))ZP(ZY,θ)+ZP(ZY,θ(i))j=2nlogP(yj,zjθ))=θargmax(P(z1=0Y,θ(i))logP(y1,z1=0θ)+P(z1=1Y,θ(i))logP(y1,z1=1θ))+ZP(ZY,θ(i))j=2nlogP(yj,zjθ))=θargmaxz1(P(z1Y,θ(i))logP(y1θ))+ZP(ZY,θ(i))j=2nlogP(yj,zjθ))=θargmaxz1(P(z1Y,θ(i))logP(y1θ))+z2(P(z2Y,θ(i))logP(y2θ))+ZP(ZY,θ(i))j=3nlogP(yj,zjθ))=...=θargmaxj=1nzjP(zjyj,θ(i))log(yj,zjθ)
其中 Z ′ = ( z 2 , z 3 , . . . , z n ) , Y ′ = ( y 2 , y 3 , . . . y n ) Z' = (z_2,z_3,...,z_n),Y'=(y_2,y_3,...y_n) Z=(z2,z3,...,zn),Y=(y2,y3,...yn)。显然, ∑ Z ′ P ( Z ′ ∣ Y ′ , θ ) = 1 \mathop{\sum}\limits_{Z'}P(Z'|Y',\theta)=1 ZP(ZY,θ)=1,( Z ′ Z' Z的条件概率对 Z ′ Z' Z的积分一定是1)
(注:参考了 https://blog.csdn.net/zsdust/article/details/100042491)
带入我们上边得到的公式,得到
θ ( i + 1 ) = a r g m a x θ ∑ j = 1 n ∑ z j P ( z j ∣ y j , θ ( i ) ) l o g ( y j , z j ∣ θ ) = a r g m a x θ ∑ j = 1 n { [ l o g π p y j ( 1 − p ) ( 1 − y j ) ] μ j ( i + 1 ) + [ l o g ( 1 − π ) q y j ( 1 − q ) ( 1 − y j ) ] ( 1 − μ j ( i + 1 ) ) } \begin{aligned} \theta^{(i+1)} &= \mathop{argmax}\limits_{\theta}\sum_{j=1}^n\sum_{z_j}P(z_j|y_j,\theta^{(i)})log(y_j,z_j|\theta)\\ &=\mathop{argmax}\limits_{\theta}\sum_{j=1}^n\{[log\pi p^{y_j}(1-p)^{(1-y_j)}]\mu_j^{(i+1)} + [log(1-\pi)q^{y_j}(1-q)^{(1-y_j)}](1-\mu_j^{(i+1)})\} \end{aligned} θ(i+1)=θargmaxj=1nzjP(zjyj,θ(i))log(yj,zjθ)=θargmaxj=1n{[logπpyj(1p)(1yj)]μj(i+1)+[log(1π)qyj(1q)(1yj)](1μj(i+1))}
上式对 π \pi π, p p p, q q q求导数,分别让导数等于0即可得到上边的公式。
π \pi π求导
1 π ( i + 1 ) ∑ j = 1 n μ j ( i + 1 ) + 1 1 − π ( i + 1 ) ( 1 − μ j ( i + 1 ) ) = 0 ( 1 − π ( i + 1 ) ) ∑ j = 1 n μ j ( i + 1 ) + π ( i + 1 ) ∑ j = 1 n ( 1 − μ j ( i + 1 ) ) = 0 π ( i + 1 ) = 1 n ∑ j = 1 n μ j ( i + 1 ) \begin{aligned} \frac{1}{\pi^{(i+1)}}\sum_{j=1}^n\mu_j^{(i+1)} + \frac{1}{1-\pi^{(i+1)}}(1-\mu_j^{(i+1)}) &= 0\\ (1-\pi^{(i+1)})\sum_{j=1}^n\mu_j^{(i+1)} + \pi^{(i+1)}\sum_{j=1}^n(1-\mu_j^{(i+1)})&=0\\ \pi^{(i+1)} = \frac{1}{n}\sum_{j=1}^{n}\mu_j^{(i+1)} \end{aligned} π(i+1)1j=1nμj(i+1)+1π(i+1)1(1μj(i+1))(1π(i+1))j=1nμj(i+1)+π(i+1)j=1n(1μj(i+1))π(i+1)=n1j=1nμj(i+1)=0=0
p p p求导
∑ j = 1 n [ y j ( 1 − p ( i + 1 ) ) + ( y j − 1 ) p ( i + 1 ) ] μ j ( i + 1 ) = 0 ∑ j = 1 n [ y j − p ( i + 1 ) ] μ j ( i + 1 ) = 0 ∑ j = 1 n y j μ j ( i + 1 ) − p ( i + 1 ) ∑ j = 1 n μ j ( i + 1 ) = 0 p ( i + 1 ) = ∑ j = 1 n μ j ( i + 1 ) y j ∑ j = 1 n μ j i + 1 \begin{aligned} \sum_{j=1}^n[y_j(1-p^{(i+1)}) + (y_j-1)p^{(i+1)}]\mu_j^{(i+1)} &= 0\\ \sum_{j=1}^n[y_j - p^{(i+1)}]\mu_j^{(i+1)} &= 0\\ \sum_{j=1}^n y_j\mu_j^{(i+1)} - p^{(i+1)}\sum_{j=1}^n\mu_j^{(i+1)}&=0\\ p^{(i+1)} = \frac{\mathop{\sum}\limits_{j=1}^n\mu_j^{(i+1)}y_j}{\mathop{\sum}\limits_{j=1}^n\mu_j^{i+1}} \end{aligned} j=1n[yj(1p(i+1))+(yj1)p(i+1)]μj(i+1)j=1n[yjp(i+1)]μj(i+1)j=1nyjμj(i+1)p(i+1)j=1nμj(i+1)p(i+1)=j=1nμji+1j=1nμj(i+1)yj=0=0=0
q q q求导
∑ j = 1 n y j l o g q ( i + 1 ) + ( 1 − y j ) l o g ( 1 − q ( i + 1 ) ) ( 1 − μ j ( i + 1 ) ) = 0 ∑ j = 1 n y j ( 1 − μ j ( i + 1 ) ) − q ∑ j = 1 n ( 1 − μ j ( i + 1 ) ) = 0 q i + 1 = ∑ j = 1 n ( 1 − μ j ( i + 1 ) ) y j ∑ j = 1 n ( 1 − μ j ( i + 1 ) ) \begin{aligned} \sum_{j=1}^ny_jlogq^{(i+1)} + (1-y_j)log(1-q^{(i+1)})(1-\mu_j^{(i+1)})&=0\\ \sum_{j=1}^ny_j(1-\mu_j^{(i+1)})-q\sum_{j=1}^n(1-\mu_j^{(i+1)})&=0\\ q^{i+1} = \frac{\mathop{\sum}\limits_{j=1}^n(1-\mu_j^{(i+1)})y_j}{\mathop{\sum}\limits_{j=1}^n(1-\mu_j^{(i+1)})} \end{aligned} j=1nyjlogq(i+1)+(1yj)log(1q(i+1))(1μj(i+1))j=1nyj(1μj(i+1))qj=1n(1μj(i+1))qi+1=j=1n(1μj(i+1))j=1n(1μj(i+1))yj=0=0

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值