自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(108)
  • 资源 (17)
  • 问答 (3)
  • 收藏
  • 关注

原创 用 verilog 实现 minst 数字识别

用verilog实现minst 的数字识别, 可以用modelsim看结果, 如果要部署到fpga上, PL的资源要非常非常多代码下载:(包含5个仿真文件)以数字2的仿真文件为例, 可以显示以下的结果,因为最终0-9里 数字2的得分最高,所以判断是2, 这里只是要判断最有可能的数字, 就不再化成几率的形式了代码里的x坐标和y坐标,是假设在480*272的lcd上显示, 因为minst的像素是28*28的.我们假每4个LCD的像素点代表minst的一个点,那就是在中间红色的区域才是数字显.

2020-12-17 22:43:00 23

原创 Xilinx zynq PS 透过bram和dma和PL进行数据交互

PL透过bram 向PL传递 0-9的数据,PL进行数据处理后( 在此为了简化,就将所取得的数据 + 100 返回) 透过dma 传回PS项目设计图main函数/* * Empty C++ Application */#include "xil_printf.h"#include "sleep.h"#include "bram_rd.h"#include "xbram.h"#include "xaxidma.h"#include "xparame...

2020-12-15 11:23:09 65

原创 vivado/SDK hello word 控制台无法打印输出故障排除步骤

1. 检查uart0 的配置2. 检查ddr的配置3. 移除可能出错 (配置错误,代码错误) 的模块4. 检查hardware manager 是否连接到了target5. 检查串口打开6. sdk里 ,run as => run config => 勾选 reset entire system 和 Program FPGA...

2020-12-08 14:52:28 88

原创 二进制的补码减法公式推导

二进制中 :1. 位宽不变的情况下, 模 加1等于0. 模表示所有的位数都是1, 例如位宽是2, 模就是11. 模加1就是 11b + 01b = 100b ,但是位宽不变, 只取低二位, 所以就是02. 模 = A + A的反码 ( 以下用 ~A 表示) , 例如 11 = 01 +10 , 但是这里 A 不能等于 全一,否则就是 A=A 没法继续计算求值. 这里A指的是大于0的数所以 模 = A + ~A=> 模 +1 =A + ~A ...

2020-10-30 12:19:59 74

原创 verilog fpga rgb565 转灰度图 (rgb565输出)

module grey ( //system signals input clk, input rst_n, //user input pre_frame_vsync, input pre_frame_hsync, input pre_frame_de, input [15:0] pre_rgb, //user output post_frame_vsync, output post_fra.

2020-10-23 18:49:21 108

原创 二极管知识总结 (正向偏置pn结变窄 反向偏置pn结变宽)

二极管知识总结 与 pn结变窄变宽的原因1. 价电子:每一个原子可的电特性以分成3部分, 或称为三层轨道:(1) 原子核: 例如铜原子有29个质子,带29个正电荷(2) 内层轨道: 接近原子核的电子,铜原子有28个,原子核对这些电子的吸引力很强,当我们把内层轨道和质子视为一体时,铜原子就是+1的净电荷(3) 价带轨道: 最外层的轨道, 原子核对轨道上的电子吸引力最弱, 这就是自由电子的来源, 在这个轨道上的电子称为价电子, 铜原子有1个价电子2. 价电子与导电性:良导体有1个价电.

2020-08-22 22:08:31 1338

原创 电阻 Δ-Y (Y-Δ) 等效变换的推导

2020-08-04 21:14:17 156

原创 一篇文章学会 Pandas

import numpy as npimport pandas as pdimport sysimport matplotlib.pyplot as pltindex=1if(index==1):# 创建一个Dataframe data = pd.DataFrame(np.arange(20).reshape(4, 5), index=list('abcd'), columns=list('ABCDE')) print(data) print('取出前三行') .

2020-07-24 07:04:00 34

原创 sklearn提示 ImportError: DLL load failed: 找不到指定的程序

多半是之前升级了某个模块的版本, 然后导致和sklearn的版本不兼容, 经过试验以下这几个版本是可以共存的scipy verion is 1.5.1numpy verion is 1.18.5pandas verion is 1.0.1Sklearn verion is 0.22.1处理方法,执行以下程序pip uninstall numpypip uninstall pandaspip uninstall scikit-learnpip uninstall scipyp.

2020-07-23 17:07:50 244

原创 tensorflow 常用的几个接口范例

from tensorflow import kerasfrom tensorflow.keras import layersimport tensorflow as tf# 图像分类model = keras.Sequential([ layers.Flatten(input_shape=[28, 28]), layers.Dense(128, activation='relu'), layers.Dense(10, activation='softmax')]).

2020-07-23 12:35:08 88

原创 c++ vector erase的注意事项

1. 要接收erase返回的迭代器2. erase返回的迭代器自动指向下一个位置,所以代码里有erase的, 要注意只有不运行erase的部分需要 iterator++int main(){ std::vector<int> myInt; myInt.push_back(1); myInt.push_back(2); myInt.push_back(3); //for (auto iter = myInt.begin(); for (vector<int>.

2020-07-04 23:06:29 140

原创 leetcode第65题击败100%用户的答案

#include <iostream>#include <vector>#include<numeric>#include<unordered_map>#include<string>using namespace std;bool isNumber(string s){ //先去除两边空白 int n = s.size(); if (n < 1) return false; int left = 0;...

2020-07-02 15:46:53 102

原创 softmax的公式推导

1 定义2. 将多项式化成指数族模型的一般形式3. 推导公式

2020-06-27 19:09:23 202

原创 No module named en 的解决办法spacy

No module named 'en'nlp项目出现这个错误,如果是spacy\util.py出的问题,表示找不到英文的模块.官方的解决办法是在控制台输入以下命令:python -m spacy download en_core_web_sm这个我试了下一直出现连接错误,以下是解决办法1. 先确认自己要用的spacy版本,python -m spacy info因为我这个项目要求用2.1所以那 en_core_web_sm也要2.1版本的2. 到github..

2020-06-15 22:06:42 1196

原创 nlp命名实体识别Named Entity Recognition NER demo

这是一个NER 的 demo实现的步骤是1.制作word和tag的dic,dic的id是0开始的int,出现频率高的排在前面2.将每一句话转成2个80维的向量(即最长80个字),第一个是出现句子的 word 的id(train_x),第二个是对应的ner的tag(命名实体)的id(train_y)3.把(train_x) (train_y) 用深度学习的方法训练后, 以后input一个句子, 就可以返回 对应的tag4.用 test_x测试准确率向量的样子如下:运行结果如下:

2020-06-14 17:07:17 159

原创 nlp 词性标注demo

用python做的词性标注demo代码及训练集在githubhttps://github.com/howard789/nlp_pos_tag测试数据 trying to keep pace with rival Time magazine运行结果如下:word: tryingresult: VBGexplain: Verb, gerund or present participle 动名词和现在分词-----------------------------word: tores

2020-06-09 01:06:59 105

原创 windows下xgboost的安装与测试 xgboost.dll

1. 先下载源码 git clone --recursive https://github.com/dmlc/xgboost2. 下载完后的源码在xgoobst里面, 到xgboost下建立build资料夹3. 进入build资料夹,开启power shell 输入cmake .. -G"Visual Studio 15 2017 Win64" -DUSE_CUDA=ON其中 -DUSE_CUDA=ON 是使用gpu加速,不一定需要成功后会显示-- Build files h...

2020-05-26 18:45:33 220

原创 linux下xgboost的安装与测试

在运行前,要先将python安装好, gcc 5 以上, cmake版本也不能太低1编译安装基础包git clone --recursive https://github.com/dmlc/xgboost下载后的档案在xgboost文件夹里cd xgboostmkdir buildcd buildcmake ..如果报错可以先upgrade gcc,cmake版本make -j$(nproc) //nproc是操作系统级别对每个用户创建的进程数的限制make -j...

2020-05-25 19:43:02 134

原创 VMware虚拟机 配置NAT网络, Linux关闭防火墙, 修改主机名, 修改服务器日期

这里的例子:网段192.168.100网关192.168.100.2VMnet8的IP: 192.168.100.1虚拟机IP 192.168.100.11DNS1 : 就直接配置成网关1. vmware 打开 VMWorkstation Pro=>编辑=>虚拟网络编辑器2 Window右下角打开网络和internet选项=>更改适配器选项, 应该会看到刚刚已连接的VMnet8, 配置里面的TCP/IPv43. 进入虚拟机root用户,编辑.

2020-05-24 14:28:33 280

原创 将git下载的c++项目用vs打开

首先确定下载的项目里包括CMakeLists.txt的文件,然后在文件所在目录用cmd或power shell输入以下命令(以2017版本为例):cmake . -G"Visual Studio 15 2017 Win64"中间那个 . 表示当前目录.成功的话就会在当前目录生成sln等文件然后就可以用vs打开了...

2020-05-22 22:40:49 192

原创 CART回归树的原理及python实现的demo

回归树其实就是把相邻的几个点(不纯度较小的点,一般用mse计算) 视为一个区间,所以参数里包括 最小不纯度 min_impurity_decrease, 例如以下的点, 只分成2 类, 大于6.5的就返回右边三个点的平均值8.913 ,小于6.5的返回6.237决策树张这个样:tree = { x : {'<=6.5': 6.236666666666667, '>6.5': 8.912500000000001} }如果调整了min_impurity_de...

2020-05-15 21:09:15 153

原创 基尼指数和经验熵的关系

经验熵用麦克劳林一阶展开就是基尼指数, 用泰勒展开式在x=1的地方做1阶展开,可以得到相同的结果

2020-05-06 20:24:14 190

原创 SVM公式推导

1. 首先要知道把一个带约束项的求极值问题转换成拉格朗日对偶问题的方法2. 推导SVM的目标函数,最终转换成拉格朗日对偶问题L(w,b,e,alpha,beta)3. 求解不带约束的最优解,将L(w,b,e,alpha,beta) 转成只有一个参数L(alpha)4. L(alpha)的alpha其实是一个向量,所以要用SMO将其改造成W(alpha2)的形式, 并推导...

2020-05-06 20:13:40 178

原创 泰勒展开式的推导和证明(带皮亚诺余项)

2020-05-01 01:11:10 2090

原创 支持向量机SVM (SMO) 的可视化 demo

做了一个demo可以动态显示支持向量机的更新状态, 其中蓝色的线是skleran算出来的结果, 红色的线是自己算出来的, 一般迭代 5-10次就和sklearn的 (蓝色的线) 高度重合了, 正确率不到100% 是数据本身的问题,没法用线性划分到100%正确比较了网上几个版本, 一直达不到理想的效果, 后来发现是b一直大幅跳跃 , 便做了一点修改, 首先alpha2是遍历所有的点, 遇到需...

2020-04-28 14:23:26 289

原创 用SVM预测股票涨跌 - 免费分享全套代码

突然看到几篇用SVM预测股票涨跌的博客, 照着跑了一下发现正确率很高78.85%, 盈利次数和亏损次数的比值 也是不得了啊然后发现这些文章的涨跌是当日对昨日的涨跌,也就是在盘中预测今天收盘是涨还是跌value = pd.Series(df_CB['close']-df_CB['close'].shift(1),\ index=df_CB.in...

2020-04-22 23:09:15 817

原创 隐马尔可夫模型 demo

统计学习方法第10章.红球白球的案例import numpy as npdef prepareData(): A=np.array([[0.5,0.2,0.3], [0.3,0.5,0.2], [0.2,0.3,0.5] ]) B = np.array([[0.5, ...

2020-03-18 22:32:23 82

原创 EM算法公式推导 (三硬币模型)

1. 因为有隐变量, 无法直接推导极大似然函数L(theta)2. 利用琴生不等式推导B 函数, 将问题从极大化似然函数变成极大化 B函数3. 将问题从极大化B函数变成极大化 Q函数4. 将Q函数整理成pi, p, q的函数5. 对pi偏微分,取得更新后的pi6. 对p偏微分,取得更新后的p7. 对q偏微分,取得更新后的q8. 整理程序步...

2020-03-16 17:42:38 373 1

原创 EM算法初始值设定的影响 (三硬币模型)

先自定义pi,p,q的值,随机生成实验结果,将实验结果带入EM算法估计pi,p,q的值代码:import numpy as npdef prepareData(pi,p,q): sampleNum=1000 z_array=np.random.binomial(1,pi,sampleNum) p_array=np.random.binomial(1,p,np....

2020-03-16 12:40:58 256

原创 adaboost 预测马病的几率,最大auc取法, 测试集准确率82.09%

1. 以机器学习中的horseColicTraining 为训练样本, horseColicTest为测试样本2. 实践中当训练次数大的时候会过拟合, 以最大训练次数40次, 取最大的auc的次数为最佳训练次数,3. 每次训练都会计算auc并绘图, 迭代40次后, 依照最大auc的次数重新训练,得到3个弱分类器,此时 auc 0.5264.进行测试, 测试集错误率17.91%最终r...

2020-03-15 14:03:29 196

原创 用信息增益比构建决策树,实现李航统计学习方法第五章案例

李航<统计学习方法>第五章案例 5.3决策树的生成 Page77书中给的答案用python实现的并打印生成的决策树代码import numpy as npimport pandas as pdclass Node(): def __init__(self,node_id ,content=None,complete_featrue...

2020-02-10 12:34:42 231

原创 MNIST 逻辑回归sigmoid公式推导与numpy代码实现

分几步完成1. 将伯努利分布化为指数族分布的一般形式2. 利用广义线性模型建模(sigmoid函数)3. 推导评估模型的似然函数4. 推导损失函数5. 代码实现6. 查看运行结果-----------------------------------------------1. 将伯努利分布化为指数族分布的一般形式2. 利用广义线性模型建模(sigmoid函数...

2020-01-20 20:35:06 417

原创 tensorflow 报错 Could not load dynamic library 'cudart64_

这个错主要是tensorflow的版本对应的cuda版本不对导致的例如我安装的tensorflow-gpu版本是2.1.0, cuda安装的是10.2结果报了Could not load dynamic library 'cudart64_101.dll'这个101表示对应的cuda版本应该是10.1,只要移除10.2版本的cuda,重新安装10.1版本的就行, cudnn也要一并修改...

2020-01-15 15:19:46 5054 5

原创 点云库 PCL 1.9.1 windows10, vs2017 环境配置 安装出图

1. 先下载 PCL-1.9.1-AllInOne-msvc2017-win64.exe 档案并安装,我的安装目录是D:\service\pcl\PCL 1.9.12. 然后安装D:\service\pcl\PCL 1.9.1\3rdParty\OpenNI2 目录下的OpenNI-Windows-x64-2.2.msi ,默认安装路径是C:\Program Files\OpenNI23....

2019-11-21 23:20:55 503

原创 如何快速的查看OpenCv的实现源代码

1. 用Cmake编译opencv的源码后,用vs选择 OpenCV.sln,打开后选择ALL_BUILD的Project 生成2. 全局搜索方法名,点击后就可以直接跳转到实现的代码了...

2019-11-20 18:52:26 499

原创 CMake 使用With_QT的步骤

首先安装QT5然后CMake再Configure后勾选With_QT, Generate后会报错CMake Error at cmake/OpenCVFindLibsGUI.cmake:18 (find_package): Could not find a package configuration file provided by "Qt5" with any of the...

2019-11-20 18:03:08 419

原创 mfc 动态改变Picture Control的颜色

需求是要达到以下效果,按钮显示红色,再按一次显示绿色,用颜色显示目前振动盘的状态思路,1. 建立一个Picture Control空间,ID取名 IDC_COMING ,绑定变量CStatic m_coming;2. 写一个变绿色的方法void CDlg7::setPictureColorGreen(){ CPaintDC dc(this); // device co...

2019-10-14 21:27:43 633

原创 MFC VS2017和Halcon17 联合编程,利用Halcon助手在PictureControl 连续采集显示摄像机图片

VS2017Halcon 17MFC使用笔记本自带的摄像机连续采集,显示在MFC的PictureControl控件主要方法就是确认的时候,开启一个新的线程去采集PictureControl 的ID :IDC_STATICCYunClassDlg.h文件# include "HalconCpp.h"# include "HDevThread.h"...

2019-10-06 16:27:42 507

原创 C++ map放在堆空间的简单例子

网上的例子大部分都是放在栈空间的,这里提供一个map放在堆空间的例子注意new 的后面不能省略std:: map<int, CPoint> *map1 = new std::map<int, CPoint>();#include "pch.h"#include <iostream>#include <atltypes.h>#i...

2019-10-05 06:02:52 291

原创 vs2017 MFC 离线查看系统函数的方法

1. 取得离线版的MSDN参考这里的资料参考资料https://jingyan.baidu.com/article/358570f64af7cfce4724fc0c.html里面有百度云盘下载地址,下载档案VisualStudio14.zip 下载后解压缩2 修改F1的本地路径 (可以不用修改)菜单点击 帮助-添加和删除帮助内容-管理内容解压缩刚刚下载的档案,把...

2019-09-28 10:03:01 174

Xilinx zynq PS 透过bram和dma和PL进行数据交互

PL透过bram 向PL传递 0-9的数据,PL进行数据处理后( 在此为了简化,就将所取得的数据 + 100 返回) 透过dma 传回PS https://blog.csdn.net/howard789/article/details/111194482

2020-12-15

spring-boot 2.0.2 数据库配置定时任务

spring-boot 2.0.2.RELEASE,将定时任务配置在数据库,启动项目的时候,用mybatis读取数据库,实例化对象,并设定定时任务。如果需要新增,减少,修改定时任务,仅需要修改数据库资料,并重启项目即可,无需改代码。含数据库建表语句和示范,运行application启动定时任务,测试类示范查看,修改定时任务。

2018-07-27

用 verilog 实现 minst 数字识别

用verilog实现minst 的数字识别, 可以用modelsim看结果, 如果要部署到fpga上, PL的资源要非常非常多代码下载包含5个仿真文件 https://blog.csdn.net/howard789/article/details/111346263

2020-12-17

nlp命名实体识别Named Entity Recognition NER demo

nlp命名实体识别Named Entity Recognition NER demo 1.制作word和tag的dic,dic的id是0开始的int,出现频率高的排在前面 2.将每一句话转成2个80维的向量(即最长80个字),第一个是出现句子的 word 的id(train_x),第二个是对应的ner的tag(命名实体)的id(train_y) 3.把(train_x) (train_y) 用深度学习的方法训练后, 以后input一个句子, 就可以返回 对应的tag 4.用 test_x测试准确率

2020-06-14

nlp词性标注demo

nlp词性标注pos tag的demo含训练集, 将英文句子的词性标注,并解释词性例如trying to keep pace with rival Time magazine 运行结果为 word: trying result: VBG explain: Verb, gerund or present participle 动名词和现在分词 ----------------------------- word: to result: TO explain: to 作为介词或不定式格式 ----------------------------- word: keep result: VB explain: Verb, base form 动词基本形式 ----------------------------- word: pace result: NN explain: Noun, singular or mass 常用名词 单数形式 ----------------------------- word: with result: IN explain: Preposition or subordinating conjunction 介词或从属连词 ----------------------------- word: rival result: JJ explain: Adjective 形容词或序数词 ----------------------------- word: Time result: NNP explain: Proper noun, singular 专有名词,单数形式 ----------------------------- word: magazine result: NN explain: Noun, singular or mass 常用名词 单数形式 -----------------------------

2020-06-09

xgboost.dll和xgboost.lib 2020/5/26

2020/5/26下载git代码后自己用vs生成的,包含xgboost.dll, xgboost.lib ,xgboost.exp的文件

2020-05-26

CART回归树 可视化demo.zip

这是一个用python实现的cart回归树(不是调用sklearn的), 可以调整参数,并且打印决策树并用plt展示数据和回归线,demo是回归模型,返回的值是平均值,稍微修改后可以用于分类

2020-05-15

支持向量机(SVM) SMO可视化demo

这是一个svm的demo,可以把每一次更新的图片展示出来,并把alpha等信息打印在控制台, 可以一步一步的看到svm是如何更新的, 并画上sklearn算出来的结果作为比较, 大约迭代5-10次后,结果和sklearn画出来的线高度重合. 用的是 smo算法

2020-04-28

用adaboost预测马病

1. 以机器学习中的horseColicTraining 为训练样本, horseColicTest为测试样本 2. 实践中当训练次数大的时候会过拟合, 以最大训练次数40次, 取最大的auc的次数为最佳训练次数, 3. 每次训练都会计算auc并绘图, 迭代40次后, 依照最大auc的次数重新训练,得到3个弱分类器,此时 auc 0.526 4.进行测试, 测试集错误率17.91%

2020-03-15

MNIST手写识别numpy实现

用numpy实现的深度学习,只有一层,训练前正确率为 0.098400,训练后正确率为 0.904600

2020-01-20

YunClass.rar

mfc 和 halcon 17用vs2017联合编程,halcon助手用摄像头连续采集并在PictureControl展示

2019-10-06

Qt Demo 登陆MySQL数据库增删改查

用Qt 做了一个Demo 实现MySQL数据库增删改查的功能. 页面和说明可以看这里 https://blog.csdn.net/howard789/article/details/100837934

2019-09-15

Python爬虫抓取股票资料

以前写的Python抓取股票资料的项目,因为效率太低后来没有用了,用python跑完一圈大概要几十分钟,没法使用,但是当python的demo还是不错的,这个demo用到的技能包括数据库操作,定时任务,用BeautifulSoup爬虫,python的字典,正则等 博客 https://blog.csdn.net/howard789/article/details/90741252

2019-06-02

用url作为shiro的permission的范例

是用菜单URL作为shiro的permission来管理,每一个用户分配其角色(可以有多个角色),这个系统要求必须登录才能使用,如果是对外的公开项目就不合适,shiro一般也是用在需要控制权限的项目. 每个角色分配其可以访问的url,所以当一个用户登录的时候,他会有可以访问的url的清单,这样我们就可以利用动态生成菜单和在页面上配置的方式让其只能看见自己可以访问的菜单,用户登录的时候只能看到他有权限的菜单,只要能看到的菜单或功能,都是有权限访问的. 项目用到spring-boot和mybatis。需要在test数据库里运行代码里的sql脚本,默认登录用户hao或yiqian,密码都是123456

2019-03-29

spring-boot-my-tomcat

用本地的tomcat启动springboot的demo,可以参考这个博客 https://blog.csdn.net/howard789/article/details/88850219

2019-03-27

hadoop 3.1.1 winutil.exe

winutils.ext 放在windows hadoop bin目录下,放在windows hadoop bin目录下

2019-03-09

spring-boot-shiro-demo.rar

下载后先在本地创建test_shiro数据库,然后运行resources的sql包下的5个sql文件,启动项目即可看到网页,说明的博客 https://blog.csdn.net/howard789/article/details/83305478,项目用到的技术点包括springboot+shiro+mybatis

2018-10-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除