高维二次函数的配方法(矩阵形式)

1.一元的配方法

首先回顾一元的配方法
y = a x 2 + b x + c = a ( x + b 2 a ) 2 + ( c − b 2 4 a ) \begin{aligned} y &= ax^2+bx+c\\ &= a(x + \frac{b}{2a})^2 + (c-\frac{b^2}{4a}) \end{aligned} y=ax2+bx+c=a(x+2ab)2+(c4ab2)
可以发现,对任何的二次项系数 a a a和一次项系数 b b b,都可以配成一个二次项加一个常数项的形式。

2.多元二次函数的配方

首先定义问题。将其写成矩阵形式,得到
x x x b b b为列向量, A A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值