1.一元的配方法
首先回顾一元的配方法
y = a x 2 + b x + c = a ( x + b 2 a ) 2 + ( c − b 2 4 a ) \begin{aligned} y &= ax^2+bx+c\\ &= a(x + \frac{b}{2a})^2 + (c-\frac{b^2}{4a}) \end{aligned} y=ax2+bx+c=a(x+2ab)2+(c−4ab2)
可以发现,对任何的二次项系数 a a a和一次项系数 b b b,都可以配成一个二次项加一个常数项的形式。
2.多元二次函数的配方
首先定义问题。将其写成矩阵形式,得到
设 x x x, b b b为列向量, A A