Machine Translation and Datasets - 机器翻译与数据集(RNN循环神经网络)

机器翻译与数据集

语言模型是自然语言处理的关键, 而机器翻译是语言模型最成功的基准测试。因为机器翻译正是将输入序列转换成输出序列的 序列转换模型(sequence transduction) 的核心问题。

机器翻译(machine translation) 指的是 将序列从一种语言自动翻译成另一种语言。 事实上,这个研究领域可以追溯到数字计算机发明后不久的20世纪40年代, 特别是在第二次世界大战中使用计算机破解语言编码。 几十年来,在使用神经网络进行端到端学习的兴起之前, 统计学方法在这一领域一直占据主导地位 [Brown et al., 1990, Brown et al., 1988]。 因为 统计机器翻译(statisticalmachine translation) 涉及了 翻译模型和语言模型等组成部分的统计分析, 因此基于神经网络的方法通常被称为 神经机器翻译(neuralmachine translation), 用于将两种翻译模型区分开来。

本书的关注点是神经网络机器翻译方法,强调的是端到端的学习。 与之前的语料库 是单一语言的语言模型问题存在不同, 机器翻译的数据集是由源语言和目标语言的文本序列对组成的。 因此,我们需要一种完全不同的方法来预处理机器翻译数据集, 而不是复用语言模型的预处理程序。 下面,我们看一下如何将预处理后的数据加载到小批量中用于训练。

import os
import torch
from d2l import torch as d2l

下载和预处理数据集

首先,下载一个由Tatoeba项目的双语句子对 组成的“英-法”数据集,数据集中的每一行都是制表符分隔的文本序列对, 序列对由英文文本序列和翻译后的法语文本序列组成。请注意,每个文本序列可以是一个句子, 也可以是包含多个句子的一个段落。 在这个将英语翻译成法语的机器翻译问题中, 英语是源语言(source language), 法语是目标语言(target language)

d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip', 
                          '94646ad1522d915e7b0f9296181140edcf86a4f5')

def read_data_nmt():
    """载入 “英语-法语” 数据集"""
    data_dir = d2l.download_extract('fra-eng')
    with open(os.path.join(data_dir, 'fra.txt'), 'r', encoding='UTF-8') as f:
        return f.read()
    
raw_text = read_data_nmt()           #读取数据集
print(raw_text[:75])                 #输出数据集的前75个字符
Go.	Va !
Hi.	Salut !
Run!	Cours !
Run!	Courez !
Who?	Qui ?
Wow!	Ça alors !

下载数据集后,原始文本数据需要经过几个预处理步骤。例如,我们用空格代不间断空格(non-breaking space),使用小写字母代替大写字母,并在单词和标点符号之间插入空格。

def preprocess_nmt(text):
    """预处理 “英语-法语” 数据集"""
    def no_space(char, prev_char):
        return char in set(',.!?') and prev_char != ' '
    
    #使用空格替换不间断空格
    #使用小写字母替换大写字母
    text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()
    
    #在单词与标点符号之间插入空格
    out = [' ' + char if i > 0 and no_space(char, text[i - 1]) else char
            for i, char in enumerate(text)]
    
    return ''.join(out)

text = preprocess_nmt(raw_text)
print(text[:80])
go .	va !
hi .	salut !
run !	cours !
run !	courez !
who ?	qui ?
wow !	ça alors !

词元化

在机器翻译中,我们更喜欢单词级词元化(最先进的模型可能使用更高级的词元化技术)。下面的tokenize_nmt函数对前num_examples个文本序列对进行词元,其中每个词元要么是一个词,要么是一个标点符号。此函数返回两个词元列表: source 和 target : source[i]是源语言(这里是英语)第 i i i 个文本序列的词元列表,target[i] 是目标语言(这里是法语)第 i i i 个文本序列的词元列表

def tokenize_nmt(text, num_examples=None):
    """词元化 “英语-法语” 数据数据集"""
    source, target = [], []
    
    for  i, line in enumerate(text.split('\n')):
        if num_examples and i > num_examples:
            break
            
        parts = line.split('\t')
        if len(parts) == 2:
            source.append(parts[0].split(' '))
            target.append(parts[1].split(' '))
        
    return source, target

source, target = tokenize_nmt(text)            #初始化源文件、目标文件
source[:6], target[:6] 
([['go', '.'],
  ['hi', '.'],
  ['run', '!'],
  ['run', '!'],
  ['who', '?'],
  ['wow', '!']],
 [['va', '!'],
  ['salut', '!'],
  ['cours', '!'],
  ['courez', '!'],
  ['qui', '?'],
  ['ça', 'alors', '!']])

让我们绘制每个文本序列所包含的词元数量的直方图。在这个简单的“英-法”数据集中,大多数文本序列的词元数量少于20个。

def show_list_len_pair_hist(legend, xlabel, ylabel, xlist, ylist):
    """绘制列表长度对的直方图"""
    d2l.set_figsize()
    _, _, patches = d2l.plt.hist(
        [[len(l) for l in xlist], [len(l) for l in ylist]])
    
    d2l.plt.xlabel(xlabel)
    d2l.plt.ylabel(ylabel)
    
    for patch in patches[1].patches:
        patch.set_hatch('/')
    d2l.plt.legend(legend)
    
show_list_len_pair_hist(['source', 'target'], '# tokens per sequence',
                       'count', source, target)

在这里插入图片描述

词表

由于机器翻译数据集由语言对组成,因此我们可以分别为源语言目标语言构建两个词表。使用单词级词元化时,词表大小将明显大于使用字符集词元时的词表大小。为了缓解这一问题,这里我们将出现次数少于2词的低频率词元 视为相同的未知(“<unk>”)词元。除此之外,我们还制定了额外的特定词元,例如在小批量时用于将序列填充到相同长度的填充词元(“<pad>”),以及序列的开始词元(“<bos>”)和结束词元(“<eos>”)。这些特殊词元在自然语言处理任务中比较常用。

src_vocab = d2l.Vocab(source, min_freq=2, reserved_tokens=['<pad>', '<bos>', '<eos>'])
len(src_vocab)
10012

加载数据集

回想一下,语言模型中的序列样本都有一个固定的长度,无论这个样本是一个句子的一部分还是跨越了多个句子的一个片段。这个固定长度是由 num_step(时间步数或词元数量) 参数指定的。在机器翻译中,每个样本都是由源和目标组成的文本序列对,其中的每个文本序列对可能具有不同的长度。

为了提高计算效率,我们仍然可以通过截断(truncation)填充(padding) 方式实现一次只处理一个小批量的文本序列。 假设同一个小批量中的每个序列都应该具有相同的长度num_steps, 那么如果文本序列的词元数目少于num_steps时, 我们将继续在其末尾添加特定的“”词元, 直到其长度达到num_steps; 反之,我们将截断文本序列时,只取其前num_steps 个词元, 并且丢弃剩余的词元。这样,每个文本序列将具有相同的长度, 以便以相同形状的小批量进行加载。

如前所述,下面的 truncate_pad 函数将阶段或填充文本序列。

def truncate_pad(line, num_steps, padding_token):
    """截断或填充文本序列"""
    #截断操作
    if len(line) > num_steps:
        return line[:num_steps]
    
    #填充操作
    return line + [padding_token] * (num_steps - len(line))

truncate_pad(src_vocab[source[0]], 10, src_vocab['<pad>'])
[47, 4, 1, 1, 1, 1, 1, 1, 1, 1]

现在我们定义一个函数,可以将文本序列 转换成小批量数据集用于训练。 我们将特定的“<eos>”词元添加到所有序列的末尾, 用于表示序列的结束。 当模型通过一个词元接一个词元地生成序列进行预测时, 生成的“<eos>”词元说明完成了序列输出工作。 此外,我们还记录了每个文本序列的长度, 统计长度时排除了填充词元, 在稍后将要介绍的一些模型会需要这个长度信息。

def build_array_nmt(lines, vocab, num_steps):
    """将机器翻译的文本序列转换为小批量"""
    lines = [vocab[l] for l in lines]
    lines = [l + [vocab['<eos>']] for l in lines]                                 #每个序列的结尾均为<eos>结束标记
    
    array = torch.tensor([truncate_pad(
        l, num_steps, vocab['<pad>']) for l in lines])                            #对每个序列再进行填充裁剪操作
    
    #返回长度不为空的有效长度
    valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)
    
    return array, valid_len                                                       #返回数组和有效长度列表

训练模型

最后,我们定义 load_data_nmt 函数来返回数据迭代器,以及源语言目标语言的两种词表。

def load_data_nmt(batch_size, num_steps, num_examples=600):
    """返回翻译数据集的迭代器和词表"""
    text = preprocess_nmt(read_data_nmt())                                                   #读取文本信息
    source, target = tokenize_nmt(text, num_examples)                                        #将文本信息转化为tokens数组
    
    src_vocab = d2l.Vocab(source, min_freq=2,
                         reserved_tokens=['<pad>', '<bos>', '<eos>'])
    tgt_vocab = d2l.Vocab(target, min_freq=2,
                         reserved_tokens=['<pad>', '<bos>', '<eos>'])                        #构建源语言字典,目标语言字典
    
    src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)
    tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)                 #填充或裁剪语言序列,返回处理后的数组和有效长度
    
    data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)                       #加载数据数组
    data_iter = d2l.load_array(data_arrays, batch_size)                                      #返回批量处理后的迭代器
    
    return data_iter, src_vocab, tgt_vocab                                                  #返回数据迭代器、源语言词典、目标语言词典

下面我们读出“英语-法语”数据集中的第一个小批量数据。

train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:
    print('X:', X.type(torch.int32))
    print('X的有效长度:', X_valid_len)
    print('Y:', Y.type(torch.int32))
    print('Y的有效长度:', Y_valid_len)
    break
X: tensor([[16, 51,  4,  3,  1,  1,  1,  1],
        [36,  5,  3,  1,  1,  1,  1,  1]], dtype=torch.int32)
X的有效长度: tensor([4, 3])
Y: tensor([[41, 37, 11,  5,  3,  1,  1,  1],
        [15,  0,  5,  3,  1,  1,  1,  1]], dtype=torch.int32)
Y的有效长度: tensor([5, 4])

小结

1、机器翻译指的是将文本序列从一种语言自动翻译成另一种语言。

2、使用单词级词元化时的词表大小,将明显大于使用字符级词元化时的词表大小。为了缓解这一问题,我们可以将低频词元视为相同的未知词元。

3、通过截断和填充文本序列,可以保证所有的文本序列都具有相同的长度,以便以小批量的方式加载。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gaolw1102

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值