【深度学习基础】Mac系统安装Anaconda

1.查看电脑的硬件架构

  • 查看硬件架构命令:
uname -a

我的为arm64架构。

2.下载匹配的Anaconda版本

arm64架构为例子:在这里插入图片描述pkg:可视化安装
sh:终端命令安装
Anaconda下载地址(清华镜像)

3.安装(sh安装包为例)

  • 安装:
bash Downloads/Anaconda3-2022.05-MacOSX-arm64.sh

等待一段时候后显示:

Do you accept the license terms? [yes|no]
[no] >>> 
  • 输入1
yes

过一段时候后显示:

Anaconda3 will now be installed into this location:
/Users/lilaopi/anaconda3

  - Press ENTER to confirm the location
  - Press CTRL-C to abort the installation
  - Or specify a different location below
  - >>>
  • 输入2
回车

过一段时间显示:

Do you wish the installer to initialize Anaconda3
by running conda init? [yes|no]
>>>
  • 输入3
yes

显示安装成功:

**Thank you for installing Anaconda3!**

===========================================================================

Working with Python and Jupyter is a breeze in DataSpell. It is an IDE
designed for exploratory data analysis and ML. Get better data insights
with DataSpell.

DataSpell for Anaconda is available at: https://www.anaconda.com/dataspell

4.激活

  • 激活命令
source ~/.zshrc 

有的可能是:

source ~/.bashrc 

5.验证

  • 验证命令
anaconda --version

我的显示:

anaconda Command line client (version 1.9.0)

ok你已经成功啦,拜拜👋

参考博客

参考1
参考2
参考3
关于aarch64和arm64

### 使用Anaconda进行深度学习配置和开发 #### 安装与设置Anaconda 为了有效管理和配置用于深度学习Python环境,通常推荐使用Anaconda这一工具。它不仅简化了包管理过程,还支持轻松创建隔离的工作空间——即所谓的虚拟环境[^1]。 对于初次使用者而言,在本地安装Anaconda是一个不错的选择,无论是Windows还是Mac操作系统均适用。完成安装之后,便可以通过图形化界面或者命令行工具`Anaconda Prompt`来执行后续操作[^2]。 #### 创建适合深度学习项目的Conda环境 当准备开展新的深度学习项目时,建议为该项目单独建立一个新的conda环境。这有助于保持各个项目之间的依赖项相互独立,从而减少冲突的可能性。例如: ```bash conda create --name my_deep_learning_project python=3.9 ``` 上述命令会创建名为`my_deep_learning_project`的新环境,并指定Python版本为3.9。激活此环境后即可继续安装所需的特定库文件,如PyTorch等。 #### 配置GPU加速(可选) 如果硬件条件允许,则可以进一步优化性能,通过引入CUDA及cuDNN组件实现对NVIDIA GPU的支持。这对于训练大型模型尤其重要,因为它们能够显著提高计算速度并降低时间成本。需要注意的是,只有配备了兼容NVIDIA显卡的情况下才需要考虑这部分配置;否则,默认采用CPU作为处理器已经足够应对大多数基础实验需求。 #### 开发工具选择 除了必要的软件栈之外,挑选合适的IDE同样不可忽视。虽然有许多选项可供选择,但对于那些习惯于集成开发环境的人来说,PyCharm可能是个理想之选。当然,Jupyter Notebook也是一个非常受欢迎的选择,特别是在探索性和交互式的编程场景中表现出色。 #### 基本命令行操作指南 熟悉一些常用的Anaconda命令可以帮助更高效地管理工作流程。比如查看当前已有的所有环境列表、更新现有包至最新版本或是卸载不再使用的包等功能都可通过简单的CLI指令快速达成目的[^3]。 ```bash # 查看所有的conda环境 conda env list # 更新某个具体的包到最新的稳定版 conda update package_name # 移除不需要的单个包 conda remove package_name ``` 综上所述,借助Anaconda的强大功能,可以从容面对复杂多变的深度学习任务挑战,同时享受便捷高效的开发体验。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值