python 矩阵向量乘积整理

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_43480199/article/details/88782881

@TOCpython 矩阵向量乘积整理

  1. 运算 multiply (若x,y同为行/列向量,则简单的对应点对应相乘)
    multiply 运算每个数字对应相乘:
    1)单纯列表
    x = [1,2,3]
    y = [1,1,4]
    mul = multiply(x,y)
    print(type(mul))
    print(mul)

result:在这里插入图片描述

2) array
x = array([1,2,3])
y = array([1,1,4])
mul = multiply(x,y)
print(type(mul))
print(mul)

result:
在这里插入图片描述
3)mat
x = mat([1,2,3])
y = mat([1,1,4])
mul = multiply(x,y)
print(type(mul))
print(mul)

result:
在这里插入图片描述
4)mat,但x,y为行、列向量
x = mat([1,2,3])
y = mat([1,1,4])
mul = multiply(x,y.T)
print(type(mul))
print(mul)

result:
在这里插入图片描述

  1. 运算 *
    ‘ * ’ ,与multiply类似,不过不能用于列表,mat形式为向量点乘
    1)array
    x = array([1,2,3])
    y = array([1,1,4])
    mul = x*y
    print(type(mul))
    print(mul)

result:
在这里插入图片描述
2)mat,要求行列向量维度对齐(m×n * n×d = m×d)
x = mat([1,2,3])
y = mat([1,1,4])
mul = x*y.T
print(type(mul))
print(mul)

result:
在这里插入图片描述

  1. dot(x,y):为向量点乘
    1)list
    x = [1,2,3]
    y = [1,1,4]
    mul = dot(x,y)
    print(type(mul))
    print(mul)

result:
在这里插入图片描述
2)array
x = array([1,2,3])
y = array([1,1,4])
mul = dot(x,y)
print(type(mul))
print(mul)

result:
在这里插入图片描述
3)mat
x = mat([1,2,3])
y = mat([1,1,4])
mul = dot(x,y.T)
print(type(mul))
print(mul)

result:
在这里插入图片描述

总结:

  1. multiply(x,y)为对应数字对应相乘,返回一个向量(或矩阵),对mat形式也不例外
  2. ‘*’ ,mat形式的为点乘,其它为对应点相乘,list格式不能使用!
  3. dot(x,y)为点乘。

当mat格式为点乘时,要注意前一个的列与后一个的行对齐!

展开阅读全文

没有更多推荐了,返回首页