Codeforces 919E 中国剩余定理 + 线性时间求逆元 + 折半搜索

       计算有多少 n ( 1 ≥ n ≥ x ) n(1\ge n\ge x) n(1nx) 满足

n ⋅ a n ≡ b ( m o d   p ) n\cdot a^n\equiv b(mod\ p) nanb(mod p)

        a , b , p , x ( 2 ≤ p ≤ 1 0 6 + 3 ) ( 1 ≤ a , b < p ) ( 1 ≤ x ≤ 1 0 12 ) a,b,p,x(2 \leq p \leq 10^6+3)(1 \leq a,b < p)(1 \leq x \leq 10^{12}) a,b,p,x(2p106+3)(1a,b<p)(1x1012) p p p 保证为素数。

       看到 p p p 的数据范围很容易联想,要枚举 p p p 范围内的 n n n ,再根据 x x x 范围内的 n n n 和当前 n n n 的关系计算贡献。

       我们注意到当 n n n 大于 p p p 的时候会出现 n ⋅ a n ≡ ( n % p ) ⋅ a n % ( p − 1 ) ( m o d   p ) n\cdot a^n\equiv (n\%p)\cdot a^{n\%(p-1)}(mod\ p) nan(n%p)an%(p1)(mod p)

       我们令 x = n % ( p − 1 ) , y = n % p x=n\%(p-1),y=n\%p x=n%(p1),y=n%p,则有 y ⋅ a x ≡ b ( m o d   p ) y\cdot a^x\equiv b(mod\ p) yaxb(mod p),则有 a x ≡ b ⋅ i n v ( y ) a^x\equiv b\cdot inv(y) axbinv(y),其中 i n v ( y ) inv(y) inv(y) 是关于 p p p 的乘法逆元。

       于是我们线性时间算出 1 1 1 m i n ( x , p − 1 ) min(x,p-1) min(x,p1) 的逆元(这里应该用快速幂暴力算时间应该也允许)

       记录下所有的 b ⋅ i n v ( y ) b\cdot inv(y) binv(y) 和它对应的 y y y

       然后我们枚举 x x x,找到最小的 n n n 使得 n % ( p − 1 ) = x , n % p = y n\%(p-1)=x,n\%p=y n%(p1)=x,n%p=y,也就是中国剩余定理。

       然后对于一个小于等于 x x x 的数,它所能产生的贡献即为 ( x − n ) / ( p ⋅ ( p − 1 ) ) + 1 (x-n)/(p\cdot (p-1))+1 (xn)/(p(p1))+1

#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
typedef long long LL;
const int maxn = 1e6 + 5;
LL num[maxn];
unordered_map<int, int> id;

LL a[3], b[3];
int n = 2;

LL qmod(LL a, LL b, LL mod){		
    LL ans = 0;
    while(b > 0){
        if(b & 1) ans = (ans + a) % mod;
        a = (a + a) % mod;
        b >>= 1;
    }
    return ans;
}

LL exgcd(LL a, LL b, LL &x, LL &y){
    if(b == 0){
        x = 1, y = 0;
        return a;
    }else{
        LL gcd = exgcd(b, a % b, x, y);
        LL t = y;
        y = x - (a / b) * y;
        x = t;
        return gcd;
    }
}

LL china(){
    LL m = a[1], ans = b[1], x, y;
    for(int i = 2; i <= n; i++){
        LL c = (b[i] - ans % a[i] + a[i]) % a[i];
        LL gcd = exgcd(m, a[i], x, y);
        if(c % gcd) return -1;		// 无解
        LL ag = a[i] / gcd;
        x = qmod(x, c / gcd, ag);
        ans += x * m;
        m *= ag;
        ans = (ans % m + m) % m;
    }
    return (ans % m + m) % m;
}


int main(){
    IOS;
    int aa, bb, p;
    LL x, pp;
    cin >> aa >> bb >> p >> x;
    a[1] = p;
    a[2] = p - 1;
    pp = (LL)p * (p - 1);
    int limit = min(x, p - 1LL);
    num[1] = 1;
    for(int i = 2; i <= limit; i++)
        num[i] = ((p - p / i) * num[p % i]) % p;
    for(int i = 1; i <= limit; i++)
        id[num[i] * bb % p] = i;
    LL ans = 0, now = aa, minone;
    for(int i = 1; i <= limit; i++){
        if(id.count(now)){
            b[1] = id[now];
            b[2] = i;
            minone = china();
            if(x >= minone) ans += (x - minone) / pp + 1;
        }
        now = now * aa % p;
    }
    cout << ans << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值