快速幂是一种简单而有效的小算法,它可以以 O ( l o g n ) O(logn) O(logn)的时间复杂度计算幂。
以 6 5 6^{5} 65为例,我们将幂转换为二进制 ( 101 ) 2 (101)_2 (101)2, 6 5 = 6 ( 101 ) 2 6^{5}=6^{(101)_2} 65=6(101)2。
所以我们只需看101中的每一个1都代表是多少即可。
- 我们首先看最后一个1,表示 6 1 6^1 61;
- 中间的0,如果这里是个1则表示 6 2 6^2 62,上一位表示数值的平方,即 ( 6 1 ) 2 (6^1)^2 (61)2
- 第一个1,表示 6 4 6^4 64,也就是上一位表示数值的平方,即 ( 6 2 ) 2 (6^2)^2 (62)2
知道了每一位代表多少数值,然后我们将上述结果相乘即可。
现在就有2个问题摆在面前,
- 我们怎么区分当前位是0还是1呢?
- 我们怎么获取每一位的数值呢?
为了解决上述问题,对于幂101,可以使用这样一套操作:
- 与1进行按位与& ,即 101 & 1 = 101 & 001 = 001 101\&1=101\&001=001 101&1=101&001=001,说明最后一位是1
- 然后幂 右移1,即 101 > > 1 = 010 101>>1=010 101>>1=010;
- 按位与, 010 & 1 = 010 & 001 = 000 010 \& 1= 010 \& 001 = 000 010&1=010&001=000,说明第二位是0;
- 右移1, 010 > > 1 = 001 010>>1=001 010>>1=001;
- 按位与; 001 & 1 = 001 & 001 = 001 001 \& 1= 001 \& 001 = 001 001&1=001&001=001,说明第一位是1;
至此全部问题都解决了,代码如下:
def fastPower(base, n):
# &按位与运算,举例101&011= 001,就是在二进制下,都是1才是1
ans = 1
while n:
if n & 1:
ans *= base
base *= base # 平方
n >>= 1
return ans