模型压缩优化
文章平均质量分 66
little student
目标检测/模型压缩/红外与可见光图像融合
展开
-
卷积层计算Flops常见的方法总结
原创 2021-06-14 14:41:47 · 1010 阅读 · 0 评论 -
tensorflow模型量化篇(2)全整形量化及半浮点数量化、量化感知训练
文章目录1 全整形量化(Full integer quantization)1.1 训练一个keras模型并转换为tflite格式1.2 使用浮点回退量化(float fallback quantization)1.3 仅有integer的量化(integer-only quantization)1 全整形量化(Full integer quantization)在模型转换时将权重张量以及激活张量从32位浮点数量化为8bit整数1.1 训练一个keras模型并转换为tflite格式#数据预处理tr原创 2021-03-18 21:24:42 · 3984 阅读 · 6 评论 -
tensorflow模型量化篇(1)量化方法及动态范围量化
1 量化方法在tensorflow官网中有两种类型的量化方法:量化感知训练(Quantization aware training)训练后量化(Post-training quantization)这两种方法一种是在训练中量化,一种是训练后量化。1.1 优缺点比较:训练后:集成到tensorflow lite转换器中,迭代快、容易使用,但是模型精度损失较大。训练过程中:基于Keras搭建。相对难以使用,需要更长的时间来重新训练模型,但对模型精度的保持比较好。2 训练后量化因为训练后原创 2021-03-18 15:43:24 · 6130 阅读 · 14 评论