联邦学习【01】杨强第三章横向联邦学习复现

环境:有无gpu均可
anaconda环境:conda install pytorch1.13.1 torchvision0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
具体安装命令结合自己的gpu的cuda版本
在这里插入图片描述
项目代码放在
https://gitee.com/ihan1001gitee
https://github.com/ihan1001github
项目架构
在这里插入图片描述

conf.json文件,存放训练参数

{

  "model_name" : "resnet18",
  "no_models" : 10,
  "type" : "cifar",
  "global_epochs" :20,
  "local_epochs" : 3,
  "k" : 10,
  "batch_size" : 32,
  "lr" : 0.001,
  "momentum" : 0.0001,
  "lambda" : 0.1
}

在这里插入图片描述

model_name:模型名称
no_models:客户端总数量
type:数据集信息
global_epochs:全局迭代次数,即服务端与客户端的通信迭代次数
local_epochs:本地模型训练迭代次数
k:每一轮迭代时,服务端会从所有客户端中挑选k个客户端参与训练。
batch_size:本地训练每一轮的样本数
lr,momentum,lambda:本地训练的超参数设置

lr(learning rate)表示模型在每一次迭代时更新参数的步长大小。通常需要根据数据集和模型的具体情况来选择一个合适的学习率,如果学习率过高,则容易导致参数更新过快而无法收敛;如果学习率过低,则会使得模型收敛速度变慢甚至无法收敛。例如,可以使用optim.SGD类中的lr参数来设置学习率。

momentum是一种加速梯度下降的方法,它可以在更新参数的过程中积累之前的梯度信息,并将其作为当前梯度的一部分。这样可以使得梯度下降更加平滑,避免震荡或者陷入局部极小值。通常可以将momentum设置为0.9左右,具体取值也需要根据数据集和模型来进行调整。例如,可以使用optim.SGD类中的momentum参数来设置动量。

lambda是一种正则化方法,用于避免模型过拟合。正则化可以通过对模型的损失函数添加一个惩罚项来实现。通常有两种常见的正则化方法:L1正则化和L2正则化。L1正则化会使得模型的权重向量变得更加稀疏,可以通过torch.nn.L1Loss或者optim.L1Loss来实现;L2正则化则会使得模型的权重向量变得更加平滑,可以通过torch.nn.MSELoss或者optim.MSELoss来实现。参数lambda用于控制正则化项的大小,通常需要根据数据集和模型的具体情况来进行调整。

dataset.py

'''
-*- coding: utf-8 -*-
@Time    : 2023/11/23 17:35
@Author  : ihan
@File    : FederateAI
@Software: PyCharm
'''

import torch
from torchvision import datasets, transforms

#获取数据集
#调用语句 train_datasets, eval_datasets = datasets.get_dataset("./data/", conf["type"])
def get_dataset(dir, name):
    if name == 'mnist':
        train_dataset = datasets.MNIST(dir, train=True, download=True, transform=transforms.ToTensor())
        print(train_dataset)
        print("--------------------")
        '''
        dir 数据路径  
        train=True 代表训练数据集   Flase代表测试数据集
        download  是否从互联网下载数据集并存放在dir中
        transform=transforms.ToTensor() 表示将图像转换为张量形式
        '''
        eval_dataset = datasets.MNIST(dir, train=False, transform=transforms.ToTensor())
        print(eval_dataset)
        print("--------------------")

    elif name == 'cifar':
        '''
        transforms.Compose 是将多个transform组合起来使用(由transform构成的列表)
        '''
        transform_train = transforms.Compose([
            #
            transforms.RandomCrop(32, padding=4),#transforms.RandomCrop: 切割中心点的位置随机选取
            #随机裁剪原始图像,裁剪的大小为32x32像素,padding参数表示在图像的四周填充4个像素,以避免裁剪后图像边缘信息丢失。
            transforms.RandomHorizontalFlip(),#以0.5的概率对图像进行随机水平翻转,增加数据集的多样性。
            transforms.ToTensor(),#将图像转换为张量形式,便于后续处理。
            #transforms.Normalize: 给定均值:(R,G,B) 方差:(R,G,B),将会把Tensor正则化
            transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
            #对图像进行标准化操作,减去均值并除以标准差。这里使用的均值和标准差是CIFAR-10数据集的全局均值和标准差,可以使模型更容易收敛。
        ])
        print(transform_train)
        print("--------------------")

        transform_test = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
        ])
        print(transform_test)
        print("--------------------")

        train_dataset = datasets.CIFAR10(dir, train=True, download=True,
                                         transform=transform_train)
        eval_dataset = datasets.CIFAR10(dir, train=False, transform=transform_test)

    return train_dataset, eval_dataset
# if __name__ == '__main__':
#     train_datasets, eval_datasets = get_dataset("./data/", "cifar")
#     # print(train_datasets)
#     # print(eval_datasets)

在这里插入图片描述
server.py

'''
-*- coding: utf-8 -*-
@Time    : 2023/11/23 17:37
@Author  : ihan
@File    : FederateAI
@Software: PyCharm
'''

import models, torch


class Server(object):
    '''
    定义构造函数。在构造函数中,服务端的工作包括:
    第一,将配置信息拷贝到服务端中;
    第二,按照配置中的模型信息获取模型,这里我们使用torchvision的models模块内置的ResNet - 18模型。
    '''
    def __init__(self, conf, eval_dataset):
        # 导入配置文件
        self.conf = conf
        # 根据配置获取模型文件
        self.global_model = models.get_model(self.conf["model_name"])
        # 生成一个测试集合加载器                                                           # 设置单个批次大小     # 打乱数据集
        self.eval_loader = torch.utils.data.DataLoader(eval_dataset, batch_size=self.conf["batch_size"], shuffle=True)

    '''
    定义模型聚合函数。前面我们提到服务端的主要功能是进行模型的聚合,
    因此定义构造函数后,我们需要在类中定义模型聚合函数,通过接收客户端上传的模型,使用聚合函数更新全局模型。
    聚合方案有很多种,本节我们采用经典的FedAvg算法。
    '''
    # 全局聚合模型
    # weight_accumulator 存储了每一个客户端的上传参数变化值/差值
    def model_aggregate(self, weight_accumulator):
        # 遍历服务器的全局模型

        for name, data in self.global_model.state_dict().items():
            # 更新每一层乘上学习率
            update_per_layer = weight_accumulator[name] * self.conf["lambda"]
            # 因为update_per_layer的type是floatTensor,所以将起转换为模型的LongTensor(有一定的精度损失)
            if data.type() != update_per_layer.type():
                data.add_(update_per_layer.to(torch.int64))
            else:
                data.add_(update_per_layer)

    '''
    定义模型评估函数。对当前的全局模型,利用评估数据评估当前的全局模型性能。
    通常情况下,服务端的评估函数主要对当前聚合后的全局模型进行分析,用于判断当前的模型训练是需要进行下一轮迭代、还是提前终止,或者模型是否出现发散退化的现象。
    根据不同的结果,服务端可以采取不同的措施策略。
    '''
    def model_eval(self):
        self.global_model.eval()

        total_loss = 0.0
        correct = 0
        dataset_size = 0
        for batch_id, batch in enumerate(self.eval_loader):
            data, target = batch
            dataset_size += data.size()[0]

            if torch.cuda.is_available():
                data = data.cuda()
                target = target.cuda()

            output = self.global_model(data)

            total_loss += torch.nn.functional.cross_entropy(output, target,
                                                            reduction='sum').item()  # sum up batch loss
            pred = output.data.max(1)[1]  # get the index of the max log-probability
            correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

        acc = 100.0 * (float(correct) / float(dataset_size))
        total_l = total_loss / dataset_size

        return acc, total_l

在这里插入图片描述client.py

'''
-*- coding: utf-8 -*-
@Time    : 2023/11/23 17:33
@Author  : ihan
@File    : FederateAI
@Software: PyCharm
'''

'''
横向联邦学习的客户端主要功能是接收服务端的下发指令和全局模型,利用本地数据进行局部模型训练。

'''

import models, torch, copy


class Client(object):
    '''
    定义构造函数。在客户端构造函数中,客户端的主要工作包括:
    首先,将配置信息拷贝到客户端中;
    然后,按照配置中的模型信息获取模型,通常由服务端将模型参数传递给客户端,客户端将该全局模型覆盖掉本地模型;
    最后,配置本地训练数据,
    在本案例中,我们通过torchvision 的datasets 模块获取cifar10
    数据集后按客户端ID切分,不同的客户端拥有不同的子数据集,相互之间没有交集。
    '''

    def __init__(self, conf, model, train_dataset, id=-1):

        self.conf = conf

        self.local_model = models.get_model(self.conf["model_name"])

        self.client_id = id

        self.train_dataset = train_dataset

        all_range = list(range(len(self.train_dataset)))
        data_len = int(len(self.train_dataset) / self.conf['no_models'])
        train_indices = all_range[id * data_len: (id + 1) * data_len]

        self.train_loader = torch.utils.data.DataLoader(self.train_dataset, batch_size=conf["batch_size"],
                                                        sampler=torch.utils.data.sampler.SubsetRandomSampler(
                                                            train_indices))


    '''
    定义模型本地训练函数。
    本例是一个图像分类的例子,
    因此,我们使用交叉熵作为本地模型的损失函数,利用梯度下降来求解并更新参数值
    '''
    def local_train(self, model):

        for name, param in model.state_dict().items():
            self.local_model.state_dict()[name].copy_(param.clone())

        # print(id(model))
        optimizer = torch.optim.SGD(self.local_model.parameters(), lr=self.conf['lr'],
                                    momentum=self.conf['momentum'])
        # print(id(self.local_model))
        self.local_model.train()
        for e in range(self.conf["local_epochs"]):

            for batch_id, batch in enumerate(self.train_loader):
                data, target = batch

                if torch.cuda.is_available():
                    data = data.cuda()
                    target = target.cuda()

                optimizer.zero_grad()
                output = self.local_model(data)
                loss = torch.nn.functional.cross_entropy(output, target)
                loss.backward()

                optimizer.step()
            print("Epoch %d done." % e)
        diff = dict()
        for name, data in self.local_model.state_dict().items():
            diff[name] = (data - model.state_dict()[name])
        # print(diff[name])

        return diff

main.py

'''
-*- coding: utf-8 -*-
@Time    : 2023/11/23 17:33
@Author  : ihan
@File    : FederateAI
@Software: PyCharm
'''
import argparse, json
import datetime
import os
import logging
import torch, random
import ihan

from server import *
from client import *
import models, datasets

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Federated Learning')
    parser.add_argument('-c', '--conf', dest='conf')
    args = parser.parse_args()
    #读取配置文件信息。
    with open(args.conf, 'r') as f:
        conf = json.load(f)

    ihan.saveIn(conf["model_name"],conf["no_models"],conf["type"],conf["global_epochs"],conf["local_epochs"],conf["k"])

    #获取数据集
    train_datasets, eval_datasets = datasets.get_dataset("./data/", conf["type"])
    #分别定义一个服务端对象和多个客户端对象,用来模拟横向联邦训练场景。
    server = Server(conf, eval_datasets)
    clients = []
    for c in range(conf["no_models"]):
        clients.append(Client(conf, server.global_model, train_datasets, c))

    print("\n\n")

    #每一轮的迭代,服务端会从当前的客户端集合中随机挑选一部分参与本轮迭代训练,
    #被选中的客户端调用本地训练接口local_train进行本地训练,
    #最后服务端调用模型聚合函数model_aggregate来更新全局模型
    for e in range(conf["global_epochs"]):

        candidates = random.sample(clients, conf["k"])

        weight_accumulator = {}

        for name, params in server.global_model.state_dict().items():
            weight_accumulator[name] = torch.zeros_like(params)

        for c in candidates:
            diff = c.local_train(server.global_model)

            for name, params in server.global_model.state_dict().items():
                weight_accumulator[name].add_(diff[name])

        server.model_aggregate(weight_accumulator)

        acc, loss = server.model_eval()

        print("Epoch %d, acc: %f, loss: %f\n" % (e, acc, loss))
        ihan.savePara(e,acc,loss)

ihan.py 用于输出实验结果,写入txt

'''
-*- coding: utf-8 -*-
@Time    : 2023/12/25 22:53
@Author  : ihan
@File    : FederateAI
@Software: PyCharm
'''




from datetime import datetime
import time		# python里的日期模块

def savePara(e,acc,loss):

    date = time.strftime('%Y-%m-%d %H:%M:%S').split()		# 按空格分开,这里宫格是我自己添加的
    print(date)     # ['2021-07-22', '16:11:00']
    hour_minute = date[1].split(':')
    print(hour_minute)      # 时,分,秒

    filepath = "/home/"+ date[0]+'.txt'
    output = "%s:Epoch %d  training accuracy :  %g, train Loss : %f " % (datetime.now(), e, acc, loss)
    with open(filepath,"a+") as f:
        f.write(output+'\n')
        f.close
def saveIn(model_name,no_models,date_type,global_epochs,local_epochs,current_clients):

    date = time.strftime('%Y-%m-%d %H:%M:%S').split()		# 按空格分开,这里宫格是我自己添加的
    print(date)     # ['2021-07-22', '16:11:00']
    hour_minute = date[1].split(':')
    print(hour_minute)      # 时,分,秒

    filepath = "/home/"+ date[0]+'.txt'
    output="%s:model_name %s,no_models %d,date_type %s,global_epochs %d,local_epochs %d,current_clients %d start"\
        % (datetime.now(), model_name,no_models,date_type,global_epochs,local_epochs,current_clients)
    with open(filepath, "a+") as f:
        f.write(output + '\n')
        f.close

在这里插入图片描述
关键代码解释
更新每一层乘上lambda=1/k

update_per_layer = weight_accumulator[name] * self.conf["lambda"]
data.add_(update_per_layer.to(torch.int64))

在这里插入图片描述weight_accumulator[name]代表
在这里插入图片描述

计算weight_accumulator[name]

for name, params in server.global_model.state_dict().items():
    weight_accumulator[name].add_(diff[name])   

需要先计算diff[name]

for name, data in self.local_model.state_dict().items():
        diff[name] = (data - model.state_dict()[name])

这段代码是在遍历self.local_model的状态字典,并计算本地模型参数与全局模型参数之间的差异,将差异存储在diff字典中。

具体来说,对于本地模型中的每个参数,通过访问全局模型的状态字典model.state_dict()来获取对应参数的数值,然后计算本地模型参数与全局模型参数之间的差异,并将这个差异存储在diff字典中,以参数的名称作为键。

这个操作的目的可能是为了计算本地模型相对于全局模型的参数更新量。在一些分布式或异步更新的训练算法中,本地模型通常是在单个机器上训练得到的,而全局模型则是由多个机器上的模型进行聚合得到的。为了将本地模型的参数更新同步到全局模型,需要计算本地模型参数与全局模型参数之间的差异,并将这个差异用于更新全局模型的参数。

完成

server.model_aggregate(weight_accumulator)

在这里插入图片描述

  • 11
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值