朴素贝叶斯法基本原理

第四章 朴素贝叶斯法

4.1 基本介绍

朴素贝叶斯(naive Bayes)法是基于贝叶斯定理与特征条件独立假设的分类方法【注意:朴素贝叶斯法与贝叶斯估计是不同的概念】,其是一种典型的生成学习方法。生成方法由训练数据学习联合概率分布 P ( X , Y ) P(X,Y) P(X,Y),然后求得后验概率分布 P ( Y ∣ X ) P(Y|X) P(YX)。具体来说,利用训练数据学习 P ( X ∣ Y ) P(X|Y) P(XY) P ( Y ) P(Y) P(Y)的估计,得到联合概率分布: P ( X , Y ) = P ( Y ) P ( X ∣ Y ) P(X,Y)=P(Y)P(X|Y) P(X,Y)=P(Y)P(XY)
概率估计的方法可以是极大似然估计或贝叶斯估计。

4.2 基本假设

朴素贝叶斯法的基本假设是条件独立性,即:
$$
\begin{equation*} %加表示不对公式编号
\begin{split}
P(X=x|Y=c_k)
& = P(X{(1)}=x{(1)},…,X{(n)}=x{(n)}|Y=c_{k)} \
& = \prod_{i=1}^n P(X{(j)}=x{(j)}|Y=c_{k)}}
\end{split}
\end{equation
}

$$
这是一个比较强的假设。由于这一假设,模型包含的条件概率的数量大为减少,朴素贝叶斯法的学习与预测大为简化。因而朴素贝叶斯法高效,且易于实现。其缺点是分类的性能不一定很高。【这里的更加朴素的理解是A被分类成正类和负类的两个事件是独立的】。如果假设朴素贝叶斯法中的假设输入变量都是条件是不独立的,那么此时,模型就变成了贝叶斯网络。

4.3 基本方法

朴素贝叶斯法分类时,对于给定的输入 x x x,通过学习到的模型计算后验概率分布 P ( Y = c k ∣ X = x ) P(Y=c_k|X=x) P(Y=ckX=x),将后验概率最大的类作为 x x x的类的输出。后验概率计算根据贝叶斯定理进行: P ( Y = c k ∣ X = x ) = P ( X = x ∣ Y = c k ) P ( Y = c k ) ∑ k P ( X = x ∣ Y = c k ) P ( Y = x k ) P(Y=c_k|X=x)= \frac{P(X=x|Y=c_k)P(Y=c_k)}{\sum_{k}P(X=x|Y=c_k)P(Y=x_k)} P(Y=ckX=x)=kP(X=xY=ck)P(Y=xk)P(X=xY=ck)P(Y=ck)
将4.2式中假设带入到4.3中即得以下表达式:
$$
\begin{equation}\tag{k=1,2,…,K}

P(Y=c_k|X=x)=\frac{P(Y=c_k)\prod_jP(X{(j)}=x{(j)}|Y=c_k)}{\sum\limits_kP(Y=x_k)\prod_{j}{P(X{(j)}}=x{(j)}|Y=c_{k})}

\end{equation}
这就是朴素贝叶斯法分类的的基本公式,朴素贝叶斯分类器可表示为 这就是朴素贝叶斯法分类的的基本公式,朴素贝叶斯分类器可表示为 这就是朴素贝叶斯法分类的的基本公式,朴素贝叶斯分类器可表示为
y=f(x)=
\underset{c_k}{argmax}
\frac
{P(Y=c_k)\underset{j}{\prod}P(X{(j)}=x{(j)}|Y=c_k)}
{\underset{k}{\sum\limits}P(Y=c_k)\underset{j}{\prod}P(X{(j)}=x{(j)}|Y=c_j)}
KaTeX parse error: Can't use function '$' in math mode at position 17: …事实上,上面表达式中分母对所有$̲c_k$都是相同的,所以有
\begin{equation}\tag{⭐️}
y=\underset{c_k}{argmax}
P(Y=c_k)
\underset
{j}
{\prod }{P(X{(j)}=x{(j)}|Y=c_k)}
\end{equation}
$$

同时,可证明后验概率最大化的含义就等价于风险最小化

4.4 朴素贝叶斯法的参数估计

通过上面⭐️式,可以知道需要分别求 P ( Y = c k ) P(Y=c_k) P(Y=ck)以及 P ( X ( j ) = x ( j ) ∣ Y = c k ) P(X^{(j)}=x^{(j)}|Y=c_k) P(X(j)=x(j)Y=ck)。这里主要有两种估计方法:极大似然估计和贝叶斯估计。

在这里插入图片描述

4.5 案列

对于上面公式的理解可能会有一点苦难,在下面的例子中分别用这两种方法来具体演示:根据下面的训练数据学习一个朴素贝叶斯分类器并确定 x = ( 2 , S ) T x=(2,S)^{T} x=(2,S)T的类标记 y y y。表中 X ( 1 ) 和 X ( 2 ) X^{(1)}和X^{(2)} X(1)X(2)为特征,Y为目标。

在这里插入图片描述

4.5.1 使用极大似然估计

由上表易计算下列概率:
P ( Y = 1 ) = 9 15 , P ( Y = − 1 ) = 6 15 P(Y=1)=\frac{9}{15},P(Y=-1)=\frac{6}{15} P(Y=1)=159P(Y=1)=156
P ( X ( 1 ) = 1 ∣ Y = 1 ) = 2 9 , P ( X ( 1 ) = 2 ∣ Y = 1 ) = 3 9 , P ( X ( 1 ) = 3 ∣ Y = 1 ) = 4 9 P(X^{(1)}=1|Y=1)=\frac{2}{9},P(X^{(1)}=2|Y=1)=\frac{3}{9},P(X^{(1)}=3|Y=1)=\frac{4}{9} P(X(1)=1∣Y=1)=92P(X(1)=2∣Y=1)=93P(X(1)=3∣Y=1)=94
P ( X ( 2 ) = S ∣ Y = 1 ) = 1 9 , P ( X ( 2 ) = M ∣ Y = 1 ) = 4 9 , P ( X ( 2 ) = L ∣ Y = 1 ) = 4 9 P(X^{(2)}=S|Y=1)=\frac{1}{9},P(X^{(2)}=M|Y=1)=\frac{4}{9},P(X^{(2)}=L|Y=1)=\frac{4}{9} P(X(2)=SY=1)=91P(X(2)=MY=1)=94P(X(2)=LY=1)=94
P ( X ( 1 ) = 1 ∣ Y = − 1 ) = 3 6 , P ( X ( 1 ) = 2 ∣ Y = − 1 ) = 2 6 , P ( X ( 1 ) = 3 ∣ Y = − 1 ) = 1 6 P(X^{(1)}=1|Y=-1)=\frac{3}{6},P(X^{(1)}=2|Y=-1)=\frac{2}{6},P(X^{(1)}=3|Y=-1)=\frac{1}{6} P(X(1)=1∣Y=1)=63P(X(1)=2∣Y=1)=62P(X(1)=3∣Y=1)=61
P ( X ( 2 ) = S ∣ Y = − 1 ) = 3 6 , P ( X ( 2 ) = M ∣ Y = − 1 ) = 2 6 , P ( X ( 2 ) = L ∣ Y = − 1 ) = 1 6 P(X^{(2)}=S|Y=-1)=\frac{3}{6},P(X^{(2)}=M|Y=-1)=\frac{2}{6},P(X^{(2)}=L|Y=-1)=\frac{1}{6} P(X(2)=SY=1)=63P(X(2)=MY=1)=62P(X(2)=LY=1)=61
对于给定的 x = ( 2 , S ) T x=(2,S)^{T} x=(2,S)T计算:
P ( Y = 1 ) P ( X ( 1 ) = 2 ∣ Y = 1 ) P ( X ( 2 ) = S ∣ Y = 1 ) = 9 15 ∙ 3 9 ∙ 1 9 = 1 45 P(Y=1)P(X^{(1)}=2|Y=1)P(X^{(2)}=S|Y=1)=\frac{9}{15}\bullet\frac{3}{9}\bullet\frac{1}{9}=\frac{1}{45} P(Y=1)P(X(1)=2∣Y=1)P(X(2)=SY=1)=1599391=451
P ( Y = − 1 ) P ( X ( 1 ) = 2 ∣ Y = − 1 ) P ( X ( 2 ) = S ∣ Y = − 1 ) = 6 15 ∙ 2 6 ∙ 3 6 = 1 15 P(Y=-1)P(X^{(1)=2}|Y=-1)P(X^{(2)}=S|Y=-1)=\frac{6}{15}\bullet\frac{2}{6}\bullet\frac{3}{6}=\frac{1}{15} P(Y=1)P(X(1)=2Y=1)P(X(2)=SY=1)=1566263=151
显然根据上面式子的计算,后者更大,根据朴素贝叶斯法是将实例分到后验概率最大的类中的原理,故 y = − 1 y=-1 y=1

4.5.2 使用贝叶斯估计

同理,在使用贝叶斯估计下有以下表达式:
P ( Y = 1 ) = 10 17 , P ( Y = − 1 ) = 7 17 P(Y=1)=\frac{10}{17},P(Y=-1)=\frac{7}{17} P(Y=1)=1710P(Y=1)=177
P ( X ( 1 ) = 2 ∣ Y = 1 ) = 4 12 , P ( X ( 1 ) = 2 ∣ Y = − 1 ) = 3 9 P(X^{(1)}=2|Y=1)=\frac{4}{12},P(X^{(1)}=2|Y=-1)=\frac{3}{9} P(X(1)=2∣Y=1)=124P(X(1)=2∣Y=1)=93
P ( X ( 2 ) = S ∣ Y = 1 ) = 2 12 , P ( X ( 2 ) = S ∣ Y = − 1 ) = 4 9 P(X^{(2)}=S|Y=1)=\frac{2}{12},P(X^{(2)}=S|Y=-1)=\frac{4}{9} P(X(2)=SY=1)=122P(X(2)=SY=1)=94
对于给定的 x = ( 2 , S ) T x=(2,S)^T x=(2,S)T计算:
P ( Y = 1 ) P ( X ( 1 ) = 2 ∣ Y = 1 ) P ( X ( 2 ) = S ∣ Y = 1 ) = 10 17 ∙ 4 12 ∙ 2 12 = 5 153 = 0.0327 P(Y=1)P(X^{(1)}=2|Y=1)P(X^{(2)}=S|Y=1)=\frac{10}{17}\bullet \frac{4}{12} \bullet \frac{2}{12}=\frac{5}{153}=0.0327 P(Y=1)P(X(1)=2∣Y=1)P(X(2)=SY=1)=1710124122=1535=0.0327
P ( Y = − 1 ) P ( X ( 1 ) = 2 ∣ Y = − 1 ) P ( X ( 2 ) = S ∣ Y = − 1 ) = 7 17 ∙ 3 9 ∙ 4 9 = 28 459 = 0.0610 P(Y=-1)P(X^{(1)}=2|Y=-1)P(X^{(2)}=S|Y=-1)=\frac{7}{17} \bullet \frac{3}{9} \bullet \frac{4}{9}=\frac{28}{459}=0.0610 P(Y=1)P(X(1)=2∣Y=1)P(X(2)=SY=1)=1779394=45928=0.0610
显然根据上面式子的计算,后者更大,根据朴素贝叶斯法是将实例分到后验概率最大的类中的原理,故 y = − 1 y=-1 y=1

4.6 sklearn API

朴素贝叶斯

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
一、教学目标: 1. 了解朴素贝叶斯分类算法基本原理及应用。 2. 熟悉朴素贝叶斯分类算法的实现过程。 3. 掌握朴素贝叶斯分类算法的应用场景及优缺点。 二、教学内容: 1. 朴素贝叶斯分类算法基本原理 2. 朴素贝叶斯分类算法的实现过程 3. 朴素贝叶斯分类算法的应用场景及优缺点 三、教学步骤: 1. 朴素贝叶斯分类算法基本原理 (1)介绍贝叶斯定理 (2)介绍朴素贝叶斯分类算法的原理 (3)介绍朴素贝叶斯分类算法的三个假设 2. 朴素贝叶斯分类算法的实现过程 (1)介绍数据预处理 (2)介绍特征提取和选择 (3)介绍模型训练 (4)介绍模型应用 3. 朴素贝叶斯分类算法的应用场景及优缺点 (1)介绍朴素贝叶斯分类算法的应用场景 (2)介绍朴素贝叶斯分类算法的优缺点 四、教学方: 1. 讲解:通过讲解朴素贝叶斯分类算法基本原理和实现过程,让学生理解算法的基本思想和实现方。 2. 案例分析:通过实际案例分析,让学生了解朴素贝叶斯分类算法在实际应用中的效果。 3. 讨论:通过讨论朴素贝叶斯分类算法的优缺点和应用场景,让学生深入了解算法的特点和适用范围。 五、教学评估: 1. 课堂测试:通过课堂测试,测试学生对朴素贝叶斯分类算法基本原理和实现过程的掌握程度。 2. 作业评估:通过作业评估,测试学生对朴素贝叶斯分类算法的应用场景和优缺点的理解程度。 3. 课程总结:通过课程总结,让学生对整个课程进行回顾和总结,检查学生对朴素贝叶斯分类算法的掌握程度。 六、教学资源: 1. 电子教案:提供朴素贝叶斯分类算法的详细讲解和案例分析。 2. 课件:提供朴素贝叶斯分类算法的相关图表和数据。 3. 教学视频:提供朴素贝叶斯分类算法的实际应用案例演示。 七、教学建议: 1. 注重实践:朴素贝叶斯分类算法是一种实用性很强的算法,建议在课堂上加入实践环节,让学生亲身体验算法的实际应用效果。 2. 强化理论:朴素贝叶斯分类算法的理论基础比较重要,建议在课程中加入一些理论知识的讲解,帮助学生深入理解算法的原理和思想。 3. 多角度分析:朴素贝叶斯分类算法有着广泛的应用场景,建议在课程中从多个角度来分析算法的应用和优缺点,让学生能够全面地了解算法的特点和适用范围。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值