Pytorch中矩阵用sum()函数求和降维是怎么回事

看例子:

定义一个5×4矩阵

 我们对A矩阵所有元素求和,观察求和的矩阵形状:

 这里A矩阵是二维矩阵,在计算机里面也就是有两个轴,轴0表示行,轴1表示列,求和函数A.sum()表示将A矩阵在这两个轴方向上同时求和,所以求和后A.sum()是一个标量。

A.sum()默认是将两个轴方向同时求和,也可以指定一个轴方向求和,下面我们指定按轴0方向求和,也就是按行求和,并观察求和后矩阵形状:

 可以看出求和后二维矩阵变成一维的了,按行求和,行这个维度就消失了,所以可以认为,求和就是在降维;另外提醒一下,计算机没有行和列的概念,所以不管是按行还是按列求和降维,最终都是变成一维的。

假如我们想求和但是不想降维行不行呢,是可行的,我们用keepdim=True来实现,如下所示

可以看见,现在还是一个二维的矩阵,并没有降维。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

疯丰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值