问题描述:
BERT的英文全称是什么呢?他是用来干什么的呢?
问题解答:
下面我给你一个 非常清晰、通俗但又专业 的解释,让你完全明白 BERT 的全称是什么、它是用来干什么的。
⭐ 1. BERT 的英文全称是什么?
👉 Bidirectional
👉 Encoder
👉 Representations from
👉 Transformers
组合起来就是:
🌟 BERT = Bidirectional Encoder Representations from Transformers
中文:
双向编码器表示的 Transformer 模型
⭐ 2. BERT 是用来干什么的?(通俗解释)
一句话概括:
👉 BERT 是用来理解自然语言的模型。
它的功能 ≈ 让机器“读懂”人类的文字。
就像你平时对 ChatGPT 提问时,ChatGPT 先要读懂你说的话,BERT 就是在模型中负责 “读懂文本内容” 的那一部分。
⭐ 3. BERT 的核心作用是什么?
✔ 理解文本的含义(语义理解)
例如:
-
“走到厨房左侧的桌子”
-
“把机器人导航到门口”
BERT 能把整句理解成一个向量(语义表达),让模型明白意图。
✔ 双向理解句子
与传统模型只能“从左到右”或“从右到左”不同:
🌟 BERT 同时从前往后、从后往前理解一句话(双向)
因此在理解复杂语句时更强大。
⭐ 4. 在你的论文(VLN-GPT)中,BERT 的作用是什么?
论文明确使用:
-
BERT-base 模型
-
作为 文本嵌入模块
-
把自然语言指令变成 768 维语义向量
在 VLN-GPT 里,BERT的作用非常清晰:
▶ 把导航指令编码成模型能理解的表示(z_cls)
▶ 让 GPT 理解“任务是什么”
论文对应内容:
“文本指令通过 BERT 编码为语义向量 z_cls,用于指导视觉语义融合。”
(第 3.2 节)
因此在 VLN-GPT 里:
-
ViT = 看图
-
BERT = 看文字
-
GPT2 = 做决策
⭐ 5. 用非常简单的话总结
🔹 BERT 的全称
Bidirectional Encoder Representations from Transformers
🔹 BERT 是干什么的
让 AI 读懂文字的模型
🔹 在 VLN-GPT 里的用途
理解导航指令,并把它变成 GPT 能使用的语义向量
BERT的全称与核心作用解析
1283

被折叠的 条评论
为什么被折叠?



