Extreme Points and Extreme Rays

原文链接: Describing Polyhedra by Extreme Points and Extreme Rays

原文作者:John Mitchell


Let P : = { x ∈ R n : A x ≤ b } \bm{P:}=\{x\in \mathcal{R}^n: Ax \leq b \} P:={xRn:Axb}, where A A A is an m × n m \times n m×n matrix, x x x is an n n n-vector, and b b b is an m m m-vector. Assume rank( A A A)= n n n and P ≠ ϕ \bm{P} \neq \phi P=ϕ. We look at the extreme points and extreme rays of P P P.

1)先描述 Extreme Points 的定义:

说明: 针对有界的线性约束,只需考虑 Extreme Points (极点) 即可

  • Definition 1
    A point x ∈ P x\in P xP is an extreme point of P P P, if there do not exist point x 1 x^1 x1 and x 2 x^2 x2 in P P P and a a a scalar λ \lambda λ (with x 1 ≠ x 2 x^1 \neq x^2 x1=x2 and 0 < λ < 1 0<\lambda<1 0<λ<1 ) such that x = λ x 1 + ( 1 − λ ) x 2 x=\lambda x^1 + (1-\lambda) x^2 x=λx1+(1λ)x2.
    (解读:extreme point 就是有界可行集组成的多面体的边界点)

  • Proposition 1
    x ∈ P x\in P xP is an extreme point of P P P if and only if x x x is a zero-dimensional face 标 注 [ 1 ] ^{标注[1]} [1] of P P P.
    (解读:性质1与定义1讲得是一个意思,所谓的 extreme point 就是多面体的顶点)

2)其次描述 Extreme Rays 的定义:

说明: 针对无界的线性约束,则需考虑 Extreme Points (极射线)

  • Definition 2
    Let P 0 : = { r ∈ R n : A r ≤ 0 } \bm{P^0:}=\{r\in \mathcal{R}^n: Ar \leq 0 \} P0:={rRn:Ar0}. Any r ∈ P 0 \ { 0 } r\in P^0 \backslash\{0\} rP0\{0} is a ray of P P P.
    Note: P 0 \bm{P^0} P0 is a convex cone. A set K K K is a cone if x ∈ K , λ > 0 x\in K, \lambda>0 xK,λ>0 implies λ x ∈ K \lambda x\in K λxK.
    A point r ∈ R n r\in \mathcal{R}^n rRn is a ray of P if and only if for any point x ∈ P x\in P xP the set { y ∈ R n : y = x + λ r , λ ≥ 0 } ⊆ P \{y\in \mathcal{R}^n:y=x+\lambda r, \lambda \geq 0\}\subseteq P {yRn:y=x+λr,λ0}P
    (解读:定义2就是为了引出定义3。其中, P 0 \bm{P^0} P0是凸锥,这里给出了锥 K K K的定义,且最后一行写为 y − x = λ r y-x=\lambda r yx=λr 会更容易理解一些,因为 x x x 相当于原始的偏置了)

  • Definition 3
    A ray r r r of P P P is an extreme ray if there do not exist rays r 1 r^1 r1, r 2 ∈ P 0 r^2\in P^0 r2P0 and a scalar μ \mu μ (with r 1 ≠ r 2 r^1\neq r^2 r1=r2 for any λ > 0 \lambda>0 λ>0 and 0 < μ < 1 0<\mu<1 0<μ<1) such that r = μ r 1 + ( 1 − μ ) r 2 r=\mu r^1+(1-\mu)r^2 r=μr1+(1μ)r2.
    (解读:extreme ray 就是在无界可行集中,由两个超平面相交后得到的相交线)

  • Proposition 2
    A vector r r r is an extreme ray of P P P if and only if { λ r : r ≥ 0 } \{\lambda r : r \geq0\} {λr:r0} is a one-dimensional face 标 注 [ 2 ] ^{标注[2]} [2] of P 0 P^0 P0.
    (解读:性质2与定义3讲得是一个意思,所谓的 extreme ray 就是无界多面体的边)

3)最后描述三个定理:

  • Theorem 1
    If max { c T x : x ∈ P } \{c^Tx:x\in P\} {cTx:xP} is finite then there is an optimal solution that is an extreme point.
    (解读:有界的可行集,线性规划的最优解一定取在 extreme point 上,这是显然的…)

  • Theorem 2
    If max { c T x : x ∈ P } \{c^Tx:x\in P\} {cTx:xP} is unbounded then P P P has an extreme ray r ∗ r^* r with c T r ∗ > 0 c^Tr^*>0 cTr>0.

  • Theorem 3
    The polyhedron P P P can be represented as
    P = { x ∈ R n : x = ∑ i ∈ K λ k x k + ∑ j ∈ J μ j r j   w i t h   ∑ i ∈ K λ k = 1 , λ k ≥ 0   ∀ k ∈ K , μ j ≥ 0   ∀ j ∈ J } \begin{aligned} P=\{x\in \mathcal{R}^n:x=\sum_{i\in K} \lambda_kx^k+\sum_{j\in J}\mu_jr^j \ with \ \sum_{i\in K} \lambda_k=1, \lambda_k\geq0 \ \forall k \in K, \mu_j \geq 0 \ \forall j\in J \} \end{aligned} P={xRn:x=iKλkxk+jJμjrj with iKλk=1,λk0 kK,μj0 jJ}
    where { x k } k ∈ K \{ x^k \}_{k\in K} {xk}kK is the set of extreme points of P P P and { r j } j ∈ J \{r^j\}_{j\in J} {rj}jJ is the set of extreme rays of P P P.
    This theorem is the basis for decomposition algorithms for linear programming. Note that if we drop the assumption about the rank of A, we get the following proposition:

  • Proposition 3
    If P ≠ ϕ P\neq \phi P=ϕ and r a n k ( A ) = n − k rank(A)=n-k rank(A)=nk then P P P has a face of dimension k k k and no proper face of lower dimension.


标注[1]: Zero-dimensional faces are known as polyhedron vertices (nodes)
标注[2]: One-dimensional faces are known as polyhedron edges
标注资料网址: Face-Wolfram MathWorld




更多优化内容,欢迎关注本人微信公众号:优化与博弈的数学原理

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值