线性规划技巧: Dantzig&Wolfe Decompostion

Dantzig&Wolfe分解(简称DW分解)1是一种列生成技巧,可以把一类特殊形式线性规划问题分解成若干子问题进行求解.

问题描述

我们考虑如下形式的线性规划问题:

min ⁡   c 1 T x 1 +   c 2 T x 2 +   ⋯ +   c m T x m s.t.  A 0 , 1 x 1 +   A 0 , 2 x 2 +   ⋯ +   A 0 , m x m = b 0 A 1 , 1 x 1 = b 1 A 2 , 2 x 2 = b 2 . . . A n , m x m = b m x j ≥ 0 , ∀ j \begin{aligned} \min ~ & c_1^Tx_1 & + ~ & c_2^Tx_2 & + ~ & \cdots & + ~ & c^T_m x_m & \\ \text{s.t. } & A_{0,1}x_1 & + ~ & A_{0,2}x_2 & + ~ & \cdots & + ~& A_{0,m} x_m & = b_0 \\ & A_{1,1} x_1 & & & & & & & = b_1 \\ & & & A_{2,2} x_2 & & & & & = b_2 \\ & & & & & ... & & & \\ & & & & & & & A_{n,m}x_m & = b_m \\ & x_j \geq 0, & \forall j & \end{aligned} min s.t. c1Tx1A0,1x1A1,1x1xj0,+ + jc2Tx2A0,2x2A2,2x2+ + ...+ + cmTxmA0,mxmAn,mxm=b0=b1=b2=bm

其中 A i , j ∈ R m i × n j A_{i,j}\in \mathbb{R}^{m_i \times n_j} Ai,jRmi×nj, b i ∈ R m i b_i \in\mathbb{R}^{m_i} biRmi, c j , x j ∈ R n j c_j, x_j \in \mathbb{R}^{n_j} cj,xjRnj.

说明

  1. 上述规划共 m + 1 m+1 m+1组约束. 第一组约束包含了所有的决策变量, 称为连接约束(Linking constraints), 接下来是 m m m组独立的约束.
  2. c j , x j , b i c_j, x_j, b_i cj,xj,bi都是向量.
  3. 上述规划如果写成标准形式 min ⁡ x { c T x ∣ A x = b , x ≥ 0 } \min_x \{c^Tx | Ax = b, x\geq 0\} minx{cTxAx=b,x0}, 其系数矩阵 A A A的维度是 ∑ i = 0 m m i × ∑ j = 1 n n j \sum_{i=0}^m m_i \times \sum_{j=1}^n n_j i=0mmi×j=1nnj. 我们发现 A A A实际上是相对稀疏的. 当 m m m, n n n的非常大时, 矩阵的规模可能大到无法直接求解上述规划. 在这种情况下, 我们考虑把它分解成多个子问题进行求解(DW分解).

应用场景

例1 一个公司有 m m m个部门, 各部门有独立的约束, 部门之间也有约束. 目标是最小化所有部门的总成本.

例2 一个零售公司有 m m m个仓库, 需要决定每个仓库存放的商品. 每个仓库中对商品有一些约束. 商品关于各仓库也需要满足一些约束. 目标是最小化总的成本(例如配送成本/时效等).

主问题

P i = { x i ∈ R n i ∣ A i , i x i = b i } P_i = \{ x_i \in \mathbb{R}^{n_i} \mid A_{i,i}x_i = b_i\} Pi={xiRniAi,ixi=bi}. 如果 P i P_i Pi是有界的, 那么 x i x_i xi可以表示成 P i P_i Pi顶点的凸组合. 设 v i , 1 , v i , 2 , … , v i , p i v_{i,1}, v_{i,2}, \ldots, v_{i, p_i} vi,1,vi,2,,vi,pi代表 P i P_i Pi的顶点(Extreme point), 则存在 λ i , j ≥ 0 \lambda_{i,j} \geq 0 λi,j0 ∑ j = 1 p i λ i , j = 1 \sum_{j=1}^{p_i} \lambda_{i,j}=1 j=1piλi,j=1使得
x i = ∑ j = 1 p i λ i , j v i , j . x_i = \sum_{j=1}^{p_i} \lambda_{i,j} v_{i,j}. xi=j=1piλi,jvi,j.
在一般情况下( P i P_i Pi无界或有界时), 它可以用顶点和极射线的线性组合来表示(参考 Minkowski表示定理). 具体来说, 令 w i , 1 , w i , 2 , … , w i , q i w_{i,1}, w_{i,2}, \ldots, w_{i,q_i} wi,1,wi,2,,wi,qi代表极射线(Extreme ray). 则存在 λ i , j ≥ 0 \lambda_{i,j} \geq 0 λi,j0 ∑ j = 1 p i λ i , j = 1 \sum_{j=1}^{p_i} \lambda_{i,j}=1 j=1piλi,j=1, μ i , j ≥ 0 \mu_{i,j}\geq 0 μi,j0使得
x i = ∑ j = 1 p i λ i , j v i , j + ∑ j = 1 q i μ i , j w i , j . x_i = \sum_{j=1}^{p_i} \lambda_{i,j} v_{i,j} + \sum_{j=1}^{q_i}\mu_{i,j} w_{i,j}. xi=j=1piλi,jvi,j+j=1qiμi,jwi,j.

假设我们枚举 P 1 , P 2 , … , P m P_1, P_2, \ldots, P_m P1,P2,,Pm所有的顶点和极射线. 把上式代入原问题得到主问题(Master problem):

主问题

min ⁡   ∑ i = 1 m ∑ j = 1 p i λ i , j ( c i T v i , j ) + ∑ i = 1 m ∑ j = 1 q i μ i , j ( c i T w i , j ) s.t.  ∑ i = 1 m ∑ j = 1 p i λ i , j A 0 , i v i , j + ∑ i = 1 m ∑ j = 1 p i μ i , j A 0 , i w i , j = b 0 ∑ j = 1 p i λ i , j = 1 , ∀ i λ i , j , μ i , j ≥ 0 , ∀ i , j . \begin{aligned} \min\ & \sum_{i=1}^m\sum_{j=1}^{p_i}\lambda_{i,j}(c_i^Tv_{i,j}) + \sum_{i=1}^m\sum_{j=1}^{q_i}\mu_{i,j}(c_i^Tw_{i,j}) \\ \text{s.t. } & \sum_{i=1}^m \sum_{j=1}^{p_i}\lambda_{i,j} A_{0,i}v_{i,j} + \sum_{i=1}^m \sum_{j=1}^{p_i}\mu_{i,j} A_{0,i}w_{i,j} = b_0 \\ & \sum_{j=1}^{p_i} \lambda_{i,j} =1, \quad \forall i \\ & \lambda_{i,j}, \mu_{i,j} \geq0, \quad \forall i, j. \end{aligned} min s.t. i=1mj=1piλi,j(ciTvi,j)+i=1mj=1qiμi,j(ciTwi,j)i=1mj=1piλi,jA0,ivi,j+i=1mj=1piμi,jA0,iwi,j=b0j=1piλi,j=1,iλi,j,μi,j0,i,j.

说明

  1. λ i , j \lambda_{i,j} λi,j, μ i , j \mu_{i,j} μi,j是决策变量.
  2. 约束的数量为 m 0 + m m_0+m m0+m(第一个等式包含了 m 0 m_0 m0个约束). 原问题的约束数量是 ∑ i = 0 m m i \sum_{i=0}^m m_i i=0mmi. 因此主问题的约束数量明显减少了.
  3. 但是主问题的变量显著增加了( λ i , j , μ i , j \lambda_{i,j}, \mu_{i,j} λi,j,μi,j对应所有的顶点和极射线). 与列生成技巧相似, 主问题一开始只考虑两个可行解(对应顶点和极射线). 通过求解子问题得到新的顶点或极射线.
  4. 在实际问题中, 一般情况下 P i P_i Pi都是有界的. 此时主问题可以简化成如下形式.
    min ⁡   ∑ i = 1 m ∑ j = 1 p i λ i , j ( c i T v i , j ) s.t.  ∑ i = 1 m ∑ j = 1 p i λ i , j A 0 , i v i , j = b 0 ∑ j = 1 p i λ i , j = 1 , ∀ i λ i , j ≥ 0 , ∀ i , j . \begin{aligned} \min\ & \sum_{i=1}^m\sum_{j=1}^{p_i}\lambda_{i,j}(c_i^Tv_{i,j}) \\ \text{s.t. } & \sum_{i=1}^m \sum_{j=1}^{p_i}\lambda_{i,j} A_{0,i}v_{i,j} = b_0 \\ & \sum_{j=1}^{p_i} \lambda_{i,j} =1, \quad \forall i \\ & \lambda_{i,j} \geq 0, \quad \forall i, j. \end{aligned} min s.t. i=1mj=1piλi,j(ciTvi,j)i=1mj=1piλi,jA0,ivi,j=b0j=1piλi,j=1,iλi,j0,i,j.

子问题

定义主问题的对偶变量 y ∈ R m 0 y\in\mathbb{R}^{m_0} yRm0, z i ∈ R z_i \in \mathbb{R} ziR, i = 1 , 2 , … , m i=1, 2, \ldots, m i=1,2,,m. 我们计算变量 λ i , j , μ i , j \lambda_{i,j}, \mu_{i,j} λi,j,μi,jReduced Cost:

α i , j = c i T v i , j − y T A 0 , i v i , j − z i β i , j = c i T w i , j − y T A 0 , i w i , j \begin{aligned} & \alpha_{i,j} = c_i^T v_{i,j} - y^TA_{0,i}v_{i,j} - z_i \\ & \beta_{i, j} = c_i^Tw_{i,j} - y^TA_{0,i}w_{i,j} \end{aligned} αi,j=ciTvi,jyTA0,ivi,jziβi,j=ciTwi,jyTA0,iwi,j

其中 α i , j \alpha_{i,j} αi,j, β i , j \beta_{i,j} βi,j分别代表 λ i , j , μ i , j \lambda_{i,j}, \mu_{i,j} λi,j,μi,j的reduced cost. 当 α i , j \alpha_{i,j} αi,j, β i , j ≥ 0 \beta_{i,j}\geq 0 βi,j0时得到原问题的最优解. 因此在子问题中, 我们需要计算 v i , j v_{i,j} vi,j(或 w i , j w_{i,j} wi,j)使得 α i , j , β i , j \alpha_{i,j}, \beta_{i,j} αi,j,βi,j的值尽可能小.

子问题 - i i i

min ⁡   f i : = ( c i − A 0 , i T y ) T x i s.t.  A i , i x i = b i x i ≥ 0. \begin{aligned} \min\ & f_{i} := (c_i - A_{0,i}^Ty)^T x_i \\ \text{s.t. } & A_{i,i} x_i = b_i \\ & x_i \geq 0. \end{aligned} min s.t. fi:=(ciA0,iTy)TxiAi,ixi=bixi0.

求解子问题时考虑三种情况.

  1. 最优解的目标值为 − ∞ -\infty . 此时 α i , j , β i , j < 0 \alpha_{i,j}, \beta_{i,j} < 0 αi,j,βi,j<0, 子问题的解是极射线 w i , j w_{i,j} wi,j. 我们把 A 0 , i w i , j A_{0,i}w_{i,j} A0,iwi,j加入到主问题进行求解.
  2. 最优解的目标值有界且 f i < z i f_i < z_i fi<zi. 此时 α i , j < 0 \alpha_{i,j} < 0 αi,j<0, 子问题的解是顶点 v i , j v_{i,j} vi,j. 我们把 A 0 , i v i , j A_{0,i}v_{i,j} A0,ivi,j加入到主问题进行求解.
  3. 最优解的目标值有界且 f i , j ≥ z i f_{i,j} \geq z_i fi,jzi. 此时 0 ≤ α i , j ≤ β i , j 0\leq \alpha_{i,j} \leq \beta_{i,j} 0αi,jβi,j(注意到实际上 z i ≥ 0 z_i\geq 0 zi0), 得到最优解.

例子: 一个选品问题

考虑 m m m个零售品牌商, 每个零售品牌商有自己的商品(SKU), 例如可口可乐, 雪碧和芬达对应同一家品牌商. 一家电商平台需要从 m m m个品牌中选择一些商品做营销活动. 已知每个商品的营销成本, 商品预期的收益和营销的预算. 在总营销费用不超过预算且每个品牌选中商品数量有限制的前提下, 如何选择商品使得预期的收益最大化?

我们先考虑一个直观的数学模型.

indices

  • i i i – 品牌
  • j j j – 商品

parameters

  • a i , j ∈ { 0 , 1 } a_{i, j} \in \{0, 1\} ai,j{0,1} – 商品 j j j是否属于品牌 i i i
  • p j p_j pj – 商品 j j j的预期收益
  • c j c_j cj – 商品 j j j的营销成本
  • b i b_i bi – 选中品牌 i i i的商品数量上限
  • d d d – 营销费用的总预算

decision variables

  • x j ∈ { 0 , 1 } x_j\in \{0,1\} xj{0,1} – 是否选择商品 j j j

模型1

max ⁡   ∑ j p j x j s.t.  ∑ j c j x j ≤ d ∑ j a i , j x j ≤ b i , ∀ i x j ∈ { 0 , 1 } . \begin{aligned} \max\ & \sum_j p_j x_j \\ \text{s.t. } & \sum_j c_j x_j \leq d \\ & \sum_j a_{i,j} x_j \leq b_i, \quad \forall i\\ & x_j \in \{0, 1\}. \end{aligned} max s.t. jpjxjjcjxjdjai,jxjbi,ixj{0,1}.

当品牌和商品数量较大时, 例如1000品牌和10万商品, 这时参数 a i , j a_{i,j} ai,j的规模是1亿, 因此直接求解非常困难. 注意到每个品牌的商品是不一样的, 因而矩阵 A = ( a i , j ) A = (a_{i,j}) A=(ai,j)非常稀疏, 我们可以把每个品牌中的商品分开考虑, 得到如下模型.

indices

  • i i i – 品牌
  • j j j – 商品

parameters

  • n i n_i ni – 品牌 i i i的商品数量
  • p i , j p_{i,j} pi,j – 品牌 i i i中商品 j j j的预期收益, j = 1 , 2 , … , n i j=1, 2, \ldots, n_i j=1,2,,ni
  • c i , j c_{i,j} ci,j – 品牌 i i i中商品 j j j的营销成本, j = 1 , 2 , … , n i j=1, 2, \ldots, n_i j=1,2,,ni
  • b i b_i bi – 品牌 i i i可以被选中的商品数量上限
  • d d d – 营销费用的总预算

decision variables

  • x i , j ∈ { 0 , 1 } x_{i,j}\in \{0, 1\} xi,j{0,1} – 是否选择品牌 i i i中的商品 j j j, j = 1 , 2 , … , n i j=1, 2, \ldots, n_i j=1,2,,ni

模型2
max ⁡   ∑ i = 1 m ∑ j = 1 n i p i , j x i , j s.t.  ∑ i = 1 m ∑ j = 1 n i c i , j x i , j ≤ d ∑ j = 1 n i x i , j ≤ b i , ∀ i x i , j ∈ { 0 , 1 } . \begin{aligned} \max\ & \sum_{i=1}^m\sum_{j=1}^{n_i} p_{i,j} x_{i,j} \\ \text{s.t. } & \sum_{i=1}^m\sum_{j=1}^{n_i} c_{i,j} x_{i,j} \leq d \\ & \sum_{j=1}^{n_i} x_{i,j} \leq b_i, \quad \forall i\\ & x_{i,j} \in \{0, 1\}. \end{aligned} max s.t. i=1mj=1nipi,jxi,ji=1mj=1nici,jxi,jdj=1nixi,jbi,ixi,j{0,1}.

模型1和模型2本质上是相同的, 因此当品牌数和商品数量非常大时直接求解模型2依然非常困难. 下面我们使用DW分解进行求解.

P i = { x i , j ∣ ∑ j = 1 n i x i , j ≤ b i } P_i = \{x_{i,j} \mid \sum_{j=1}^{n_i} x_{i,j} \leq b_i \} Pi={xi,jj=1nixi,jbi}, i = 1 , 2 , … , m i=1,2, \ldots, m i=1,2,,m. 注意到 P i P_i Pi是有界的, 我们用
v i , 1 ( k ) , v i , 2 ( k ) , … , v i , p i ( k ) , k = 1 , 2 , … , p i v_{i,1}^{(k)}, v_{i,2}^{(k)}, \ldots, v_{i,p_i}^{(k)}, \quad k=1, 2, \ldots, p_i vi,1(k),vi,2(k),,vi,pi(k),k=1,2,,pi

代表 P i P_i Pi的顶点, 因此 x i , j x_{i,j} xi,j可以被表示成如下形式:
x i , j = ∑ k = 1 p i λ i , k ⋅ v i , j ( k ) , 其中  ∑ k = 1 p i λ i , k = 1 ,   λ i , k ≥ 0. x_{i,j} = \sum_{k=1}^{p_i}\lambda_{i,k}\cdot v_{i,j}^{(k)}, \quad \text{其中 } \sum_{k=1}^{p_i} \lambda_{i,k} = 1,\ \lambda_{i,k}\geq 0. xi,j=k=1piλi,kvi,j(k),其中 k=1piλi,k=1, λi,k0.
把它代入模型2中我们得到主问题的形式.

主问题
max ⁡   ∑ i = 1 m ∑ j = 1 n i ∑ k = 1 p i λ i , k ( p i , j v i , j ( k ) ) s.t.  ∑ i = 1 m ∑ j = 1 n i ∑ k = 1 p i λ i , k ( c i , j v i , j ( k ) ) ≤ d ∑ k = 1 p i λ i , k = 1 , ∀ i λ i , k ≥ 0 , ∀ i , j , k . \begin{aligned} \max\ & \sum_{i=1}^m\sum_{j=1}^{n_i} \sum_{k=1}^{p_i}\lambda_{i,k} (p_{i,j}v_{i,j}^{(k)}) \\ \text{s.t. } & \sum_{i=1}^m \sum_{j=1}^{n_i} \sum_{k=1}^{p_i}\lambda_{i,k}(c_{i,j}v_{i,j}^{(k)}) \leq d \\ & \sum_{k=1}^{p_i} \lambda_{i,k} =1, \quad \forall i \\ & \lambda_{i,k} \geq 0, \quad \forall i, j, k. \end{aligned} max s.t. i=1mj=1nik=1piλi,k(pi,jvi,j(k))i=1mj=1nik=1piλi,k(ci,jvi,j(k))dk=1piλi,k=1,iλi,k0,i,j,k.

定义对偶变量 y y y z i z_i zi, i = 1 , 2 , … , m i=1,2,\ldots, m i=1,2,,m. 计算 λ i , k \lambda_{i,k} λi,k对应的reduced cost:
α i ( k ) = ∑ j = 1 n i p i , j v i , j ( k ) − ∑ j = 1 n i y ⋅ c i , j v i , j ( k ) − z i . \alpha_i^{(k)} = \sum_{j=1}^{n_i} p_{i,j}v_{i,j}^{(k)} - \sum_{j=1}^{n_i}y\cdot c_{i,j}v_{i,j}^{(k)} - z_i. αi(k)=j=1nipi,jvi,j(k)j=1niyci,jvi,j(k)zi.

注意: 主问题是最大化问题, 因此 α i ( k ) > 0 \alpha_i^{(k)}>0 αi(k)>0意味着可以提升主问题的目标函数值. 我们有:

  1. 子问题是最大化问题.
  2. 当所有为 α i ( k ) ≤ 0 \alpha_i^{(k)} \leq 0 αi(k)0时主问题达到最优.

子问题 - i i i
min ⁡   ∑ j = 1 n i ( p i , j − y c i , j ) x i , j s.t.  ∑ j = 1 n i x i , j ≤ b i x i , j ∈ { 0 , 1 } . \begin{aligned} \min\ & \sum_{j=1}^{n_i}( p_{i,j}-yc_{i,j})x_{i,j} \\ \text{s.t. } & \sum_{j=1}^{n_i}x_{i,j} \leq b_i \\ & x_{i,j} \in \{0, 1\}. \end{aligned} min s.t. j=1ni(pi,jyci,j)xi,jj=1nixi,jbixi,j{0,1}.

初始化

对任意的 i = 1 , 2 , … , m i=1, 2, \ldots, m i=1,2,,m, 定义向量:
v i = ( 0 , 0 , … , 0 ) T ∈ R b i . v_i = (0, 0, \ldots, 0)^T \in \mathbb{R}^{b_i}. vi=(0,0,,0)TRbi.
显然 v i v_i vi是每个约束 i i i的可行解, 即 ∑ j = 1 b i v i , j ≤ b i \sum_{j=1}^{b_i} v_{i,j} \leq b_i j=1bivi,jbi, ∀ i \forall i i. 我们用 v 1 , v 2 , … , v m v_1, v_2, \ldots, v_m v1,v2,,vm作为主问题初始化的顶点.

Remark. 前文的推导过程要求 v i v_i vi是多面体的顶点, 但上面 v i v_i vi的定义并不满足此条件. 这么做可行的原因是任意可行解本身就是多面体顶点的凸组合.

求解

求解的基本步骤如下:

  1. 初始化主问题, 求解子问题的输入参数 y y y
  2. 求解 m m m个子问题,分别计算 λ i , k \lambda_{i,k} λi,k对应的Reduced Cost α i ( k ) \alpha_i^{(k)} αi(k). 如果 α i ( k ) > 0 \alpha_i^{(k)}>0 αi(k)>0, 则把对应的解 v i ( k ) v_i^{(k)} vi(k)加入到主问题. ( k k k可以理解为迭代的次数)
  3. 如果所有的 α i ( k ) < 0 \alpha_i^{(k)} < 0 αi(k)<0, 则停止迭代;否则迭代求解主问题和子问题直到满足停止条件.

Python实现

主问题模型

# master_model.py

from ortools.linear_solver import pywraplp


class MasterModel(object):

    def __init__(self, p, v, c, d):
        """
        :param p: p[i][j]代表品牌i中商品j的预期收益
        :param v: v[i]代表第i个子问题的解
        :param c: c[i][j]代表品牌i中商品j的营销成本
        :param d: scalar, 总预算
        """
        self._solver = pywraplp.Solver('MasterModel',
                                       pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)
        self._p = p
        self._v = v
        self._c = c
        self._d = d
        self._la = None  # 决策变量lambda
        self._constraint_y = None  # 约束
        self._constraint_z = []  # 约束
        self._solution_la = None  # 计算结果

    def _init_decision_variables(self):
        self._la = [[]] * len(self._v)
        self._solution_la = [[]] * len(self._v)  # 初始化保存结果的变量
        for i in range(len(self._v)):
            self._la[i] = [[]] * len(self._v[i])
            self._solution_la[i] = [[]] * len(self._v[i])  # 初始化保存结果的变量
            for k in range(len(self._v[i])):
                self._la[i][k] = self._solver.NumVar(0, 1, 'la[%d][%d]' % (i, k))

    def _init_constraints(self):
        self._constraint_y = self._solver.Constraint(0, self._d)
        for i in range(len(self._v)):
            for k in range(len(self._v[i])):
                f = 0
                for j in range(len(self._v[i][k])):
                    f += self._c[i][j] * self._v[i][k][j]
                self._constraint_y.SetCoefficient(self._la[i][k], f)

        self._constraint_z = [None] * len(self._v)
        for i in range(len(self._v)):
            self._constraint_z[i] = self._solver.Constraint(1, 1)
            for k in range(len(self._la[i])):
                self._constraint_z[i].SetCoefficient(self._la[i][k], 1)

    def _init_objective(self):
        obj = self._solver.Objective()
        for i in range(len(self._v)):
            for k in range(len(self._v[i])):
                f = 0
                for j in range(len(self._v[i][k])):
                    f += self._p[i][j] * self._v[i][k][j]
                obj.SetCoefficient(self._la[i][k], f)
        obj.SetMaximization()

    def solve(self):
        self._init_decision_variables()
        self._init_constraints()
        self._init_objective()
        self._solver.Solve()
        # 保存计算结果
        for i in range(len(self._v)):
            for k in range(len(self._v[i])):
                self._solution_la[i][k] = self._la[i][k].solution_value()

    def get_solution_value(self):
        return self._solution_la

    def get_y(self):
        """ 获取对偶变量y的值
        """
        return self._constraint_y.dual_value()

    def get_zi(self, i):
        """ 获取对偶变量z[i]的值
        """
        return self._constraint_z[i].dual_value()

    def get_obj_value(self):
        res = 0
        for i in range(len(self._p)):
            for k in range(len(self._v[i])):
                for j in range(len(self._p[i])):
                    res += self._solution_la[i][k] * self._p[i][j] * self._v[i][k][j]
        return res

    def get_solution_x(self):
        """ 得到原问题的解.  x[i][j] = sum(la[i][k] * v[i][k][j]) over k.
        """

        x = [[]] * len(self._v)
        for i in range(len(self._v)):
            x[i] = [0] * len(self._v[i][0])

        for i in range(len(self._v)):
            for k in range(len(self._v[i])):
                for j in range(len(self._v[i][k])):
                    x[i][j] += self._solution_la[i][k] * self._v[i][k][j]
        return x

子问题模型

# sub_model.py

from ortools.linear_solver import pywraplp
import numpy as np


class SubModel(object):
    """ 子问题i
    """
    def __init__(self, pi, ci, y, bi):
        """ 下标i忽略
        :param pi: list, pi := p[i] = [p1, p2, ..., ]
        :param ci: list, ci := c[i] = [c1, c2, ..., ]
        :param y: scalar
        :param bi: scalar
        """
        self._solver = pywraplp.Solver('MasterModel',
                                       pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)
        self._pi = pi
        self._ci = ci
        self._y = y
        self._bi = bi
        self._x = None  # 决策变量
        self._solution_x = None  # 计算结果

    def _init_decision_variables(self):
        self._x = [None] * len(self._pi)
        for j in range(len(self._pi)):
            self._x[j] = self._solver.IntVar(0, 1, 'x[%d]' % j)

    def _init_constraints(self):
        ct = self._solver.Constraint(0, self._bi)
        for j in range(len(self._pi)):
            ct.SetCoefficient(self._x[j], 1)

    def _init_objective(self):
        obj = self._solver.Objective()
        for j in range(len(self._pi)):
            obj.SetCoefficient(self._x[j], self._pi[j] - self._y * self._ci[j])
        obj.SetMaximization()

    def solve(self):
        self._init_decision_variables()
        self._init_constraints()
        self._init_objective()
        self._solver.Solve()
        self._solution_x = [s.solution_value() for s in self._x]

    def get_solution_x(self):
        return self._solution_x

    def get_obj_value(self):
        p = np.array(self._pi)
        c = np.array(self._ci)
        x = np.array(self._solution_x)
        return sum((p - self._y * c) * x)

DW分解的求解过程

# dw_proc.py

from master_model import MasterModel
from sub_model import SubModel


class DWProc(object):

    def __init__(self, p, c, d, b, max_iter=1000):
        """
        :param p: p[i][j]代表品牌i中商品j的预期收益
        :param c: c[i][j]代表品牌i中商品j的营销成本
        :param d: 总营销成本, int
        :param b: b[i]代表选中品牌i的商品数量限制
        """
        self._p = p
        self._c = c
        self._d = d
        self._b = b
        self._v = None  # 待初始化
        self._max_iter = max_iter
        self._iter_times = 0
        self._status = -1
        self._reduced_costs = [1] * len(self._p)
        self._solution_x = None  # 计算结果
        self._obj_value = 0  # 目标函数值

    def _stop_criteria_is_satisfied(self):
        """ 根据reduced cost判断是否应该停止迭代.
        注意: 这是最大化问题, 因此所有子问题对应的reduced cost <= 0时停止.
        """
        st = [0] * len(self._reduced_costs)
        for i in range(len(self._reduced_costs)):
            if self._reduced_costs[i] < 1e-6:
                st[i] = 1
        if sum(st) == len(st):
            self._status = 0
            return True
        if self._iter_times >= self._max_iter:
            if self._status == -1:
                self._status = 1
            return True
        return False

    def _init_v(self):
        """ 初始化主问题的输入
        """
        self._v = [[]] * len(self._p)
        for i in range(len(self._p)):
            self._v[i] = [[0] * len(self._p[i])]

    def _append_v(self, i, x):
        """ 把子问题i的解加入到主问题中

        :param x: 子问题i的解
        """
        self._v[i].append(x)

    def solve(self):
        # 初始化主问题并求解
        self._init_v()
        mp = MasterModel(self._p, self._v, self._c, self._d)
        mp.solve()
        self._iter_times += 1
        # 迭代求解主问题和子问题直到满足停止条件
        while not self._stop_criteria_is_satisfied():
            # 求解子问题
            print("==== iter %d ====" % self._iter_times)
            for i in range(len(self._p)):
                # 求解子问题
                sm = SubModel(self._p[i], self._c[i], mp.get_y(), self._b[i])
                sm.solve()
                # 更新reduced cost
                self._reduced_costs[i] = sm.get_obj_value() - mp.get_zi(i)
                # 把子问题中满足条件的解加入到主问题中
                if self._reduced_costs[i] > 0:
                    self._append_v(i, sm.get_solution_x())
                print(">>> Solve sub problem %d, reduced cost = %f" % (i, self._reduced_costs[i]))

            # 求解主问题
            mp = MasterModel(self._p, self._v, self._c, self._d)
            mp.solve()

            self._iter_times += 1

        self._solution_x = mp.get_solution_x()
        self._obj_value = mp.get_obj_value()
        status_str = {-1: "error", 0: "optimal", 1: "attain max iteration"}
        print(">>> Terminated. Status:", status_str[self._status])

    def print_info(self):
        print("==== Result Info  ====")
        print(">>> objective value =", self._obj_value)
        print(">>> Solution")
        sku_list = [[]] * len(self._solution_x)
        for i in range(len(self._solution_x)):
            sku_list[i] = [j for j in range(len(self._solution_x[i])) if self._solution_x[i][j] > 0]
        for i in range(len(self._solution_x)):
            print("brand %d, sku list:" % i, sku_list[i])

主函数

# main.py

from data import p, c, b, d  # instance data
from dw_proc import DWProc


if __name__ == '__main__':
    dw = DWProc(p, c, d, b)
    dw.solve()
    dw.print_info()

完整代码

参考文献


  1. George B. Dantzig; Philip Wolfe. Decomposition Principle for Linear Programs. Operations Research. Vol 8: 101–111, 1960. ↩︎

  • 13
    点赞
  • 60
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值