论文作者:Yang Li1, Yoshitaka Ushiku1 and Tatsuya Harada1,2
论文来源:ICRA 2019
关键词:单目视觉里程计、滑窗位姿图、KITTI里程表数据集
摘要
基于无监督学习的单目视觉里程计(VO),最近因其潜在的无标签学习能力以及对相机参数和环境变化的鲁棒性而备受关注。但是,由于缺少漂移校正技术,在大规模里程计估计方面的精确度仍远不及基于几何的方法。在本文中,我们建议利用图优化和闭环检测来克服基于单目视觉里程计的无监督学习的局限性。为此,我们提出了一种混合的视觉里程计系统,该系统将无监督的单目VO(称为NeuralBundler)与图优化后端结合在一起。 NeuralBundler的神经网络体系结构采用时间和空间光度损失作为主要监督,并生成由多视角6自由度约束组成的滑窗位姿图。我们提出了一种新颖的位姿循环一致性损失,以减轻滑窗位姿图中的矛盾,从而改善性能和鲁棒性。在后端,根据NeuralBundler估计的局部闭环6自由度约束构建全局姿态图,并在SE(3)上进行优化。根据在KITTI里程表数据集的实验表明,1)NeuralBundler在无监督单目VO估计上达到了最先进的性能,2)与已建立的单目SLAM系统相比,我们的整个方法可以实现有效的闭环并显示出良好的整体平移精度。
主要贡献
1.提出了一种基于无监督学习型单目视觉测距仪——NeuralBundler,从单目图像序列中生成滑窗位姿图,并具有新颖的训练损失,从而增强了位姿循环的一致性。
2.基于位姿图优化的高效闭环线程,该位姿图是根据无监督单眼视觉里程计估计的局部和闭环的六自由度约束组成的。
算法流程
1.网络架构
图1 算法流程图,该算法是深度学习VO和传统图优化的结合,包含前端和后端两部分,前端为基于非监督学习的单目视觉里程计,后端为基于位姿图优化的回环检测
图1 算法流程图,该算法是深度学习VO和传统图优化的结合,包含前端和后端两部分,前端为基于非监督学习的单目视觉里程计,后端为基于位姿图优化的回环检测
NeuralBundler网络由一个位姿估计网络和一个深度估计网络组成,这两个网络经过联合训练,可以在测试阶段单独使用。
图2 NeuralBundler网络训练过程
位姿估计网络的输入是一系列大小为N的滑动窗口视图,输出是带有滑窗的位姿图,该图具有N个节点和N(N-1)个边缘,每个边缘代表相对的两个视图之间的六自由度运动。该网络由7个stride-2卷积和两个带有6×N×(N − 1)个输出通道的1×1卷积(对应于3个Euler角和3D平移)组成。
深度估计网络为每个RGB图像生成一张密集的深度图。
2.损失函数
最终的损失函数是光度损失和位姿循环一致性损失的加权总和。
A 光度损失函数
Pi是视图i中像素的齐次坐标,二Pj是Pi在视图j上的投影坐标。基于对极几何,我们可以通过以下方式从Pi获得Pj
瞬时光度损失为:
空间光度损失为:
B 位姿循环一致性损失
主要结果
图4 在KITTI里程计数据集00、05、07序列上的结果。上三幅为NeuralBundler估计的结果,下三幅为增加闭环检测后的结果。
图5 我们的方法在KITTI里程计01,02,03,09序列上的结果
表1 与其他非监督学习方法的结果对比
表2 与ORB-SLAM的对比结果。
图6 与ORB-SLAM的对比结果。
在本文中通过实验验证可以得出:
1)NeuralBundler是最先进的单目视觉里程计算法
2)与ORB-SLAM相比,我们的算法在平移运动上有更高的精度
论文连接:
https://pan.baidu.com/s/19gUhT8my526PGNaSfyViXg
提取码 ziyl