算法之树形dp

本文介绍了如何使用树形动态规划解决上司舞会问题,包括没有上司的舞会和上司舞会变形两种情况。文章通过分析、给出参考代码并探讨了迭代改进方法,展示了树形dp在解决限制条件下的方案计数问题中的应用。
摘要由CSDN通过智能技术生成

1.没有上司的舞会

#include<bits/stdc++.h>
using namespace std;
int dfs(int root,vector<int> &vec,
		vector<vector<int>> &child,vector<int> &dp){
	if(dp[root]!=0) return dp[root];
	
	//没有选择该节点,那么可以选择子节点;
	int res1=0;
	for(int i=0;i<child[root].size();i++){
		int tmp=child[root][i];
		res1+=dfs(tmp,vec,child,dp);
	}
	
	//选择该节点,那么不可以选择子节点,但是可以选择子孙节点。
	int res2=vec[root];
	for(int i=0;i<child[root].size();i++){
		int tmp1=child[root][i];
		for(int j=0;j<child[tmp1].size();j++){
			int tmp2=child[tmp1][j];
			res2+=dfs(tmp2,vec,child,dp);
		}
	}
	
	//记忆化搜索和树形dp核心所在;
	dp[root]=max(res1,res2);
	return dp[root];
}
int main()
{
	int n;
	vector<int> vec(n+1,0);
	vector<vector<int>> child(n+1,vector<int>());
	vector<int> dp(n+1,0);
	vector<int> flag(n+1,0);
	
	cin>>n;
	for(int i=1;i<=n;i++) cin>>vec[i];
	for(int i=0;i<n-1;i++){
		int x,y;cin>>x>>y;
		child[y].push_back(x);
		flag[x]++;
	} 
	int root=0;
	for(int i=1;i<=n;i++){
		if(flag[i]==0){
			root=i;
			break;
		}
	}
	
	cout<<dfs(root,vec,child,dp);
    return 0;
}

2.上司舞会变形

2.1 描述

  • G将军有一支训练有素的军队,这个军队除开G将军外,每名士兵都有一个直接上级(可能是其他士兵,也可能是G将军)。现在G将军将接受一个特别的任务,需要派遣一部分士兵(至少一个)组成一个敢死队,为了增加敢死队队员的独立性,要求如果一名士兵在敢死队中,他的直接上级不能在敢死队中。请问,G将军有多少种派出敢死队的方法。注意,G将军也可以作为一个士兵进入敢死队。
  • 输入格式:输入的第一行包含一个整数n,表示包括G将军在内的军队的人数。军队的士兵从1至n编号,G将军编号为1。接下来n-1个数,分别表示编号为2, 3, …, n的士兵的直接上级编号,编号i的士兵的直接上级的编号小于i。
  • 输出格式:输出一个整数,表示派出敢死队的方案数。由于数目可能很大,你只需要输出这个数除10007的余数即可。

样例1
输入:3 1 1
输出:4
样例说明,这四种方式分别是:选1,选2,选3,选2和3。
样例2
输入:7 1 1 2 2 3 3
输出:40
数据规模与约定
对于20%的数据,n ≤ 20;
对于40%的数据,n ≤ 100;
对于100%的数据,1 ≤ n ≤ 100000;

2.2 分析

  • 首先,这道题和第一道题是同种类型的题目,只是最后要求的结果不一样,树形dp的难点在于树上做动态规划dp[i][0]代表第i个节点的人不去的方案数,dp[i][1]代表第i个节点去的方案数。难点来了, i节点去和不去的方案数和什么有关呢?仔细分析得到,如果i节点去,那么他的下属都不能去,因此dp[i][1]=dp[j][0]*dp[k][0]*dp[x][0]....(j,k,x都是i节点的下属,为什么用的是乘法呢,这是应用到了乘法原理,下边还会用到)。同理分析可得不去的情况:dp[i][0]=dp[j][0]*dp[j][1]+dp[k][0]*dp[k][1]+dp[x][0]*dp[x][1]......
  • 根据题目简化表达式,可以把所有人都不去的情况先算在内,最后输出答案的时候减1即可。这样的话,我们可以通过乘法原理简化出上边的代码dp[i][0]=(dp[j][0]+dp[j][1])* (dp[k][0]+dp[k][1])*......(其中j,k,.....为孩子节点)
  • 到此,递推公式可以写成下面的形式:
dp[i][1]=dp[j][0]*dp[k][0]*dp[x][0].....; //其中j,k,x都是i节点的下属;
dp[i][0]=(dp[j][0]+dp[j][1])*·········;   //其中j为i的子节点;
  • 最后,就是如上的代码,得到的递推式最终形式:
dp[i][1]*=dp[m[i][j]][0];
dp[i][0]*=(dp[m[i][j]][0]+dp[m[i][j]][1]);
//其中m[i][j]就是i节点的子节点,j=0,1,2,3.....;
  • 然后把每个节点的初始值为1。当节点为叶子时,没有下属,他去和不去只和他自己有关,去是一种方案,不去是另外一种方案,最后的方案总数应该是根节点去dp[root][1]和不去dp[root][0]之和,再减去所有人都不去的情况。

2.3 参考代码

#include<bits/stdc++.h>
using namespace std;
const int mod=10007;
const int N=100000+5;
vector<vector<int>> vec(N);
vector<vector<int>> dp(N,vector<int>(2,1));
int dfs(int x){
	for(int i=0;i<vec[x].size();i++){
		int tmp=vec[x][i];
		dfs(tmp); 
		//不选择该节点;
		dp[x][0]*=dp[tmp][0]+dp[tmp][1];
		dp[x][0]%=mod;
		//选择该节点;
		dp[x][1]*=dp[tmp][0];
		dp[x][1]%=mod;
	}
}
int main()
{
	int n;cin>>n;
	for(int i=2;i<=n;i++){
		int x;cin>>x;
		vec[x].push_back(i);
	}
	int root=1;
	dfs(root);
	cout<<(dp[root][0]+dp[root][1]-1)%mod;
	return 0;
}

2.4 改进

  • 虽然使用递归可以解决问题,但是该题的数据规模比较大,不适合使用递归,因此,我们选择使用迭代的方式解决(前提是题目提示编号i的士兵的直接上级的编号小于i),代码是差不多相同的。
  • 参考代码:
#include<bits/stdc++.h>
using namespace std;
const int mod=10007;
const int N=100000+5;
vector<vector<int>> vec(N);
vector<vector<int>> dp(N,vector<int>(2,1));
int main()
{
	int n;cin>>n;
	for(int i=2;i<=n;i++){
		int x;cin>>x;
		vec[x].push_back(i);
	}
	for(int x=n;x>=1;x--){
		for(int j=0;j<vec[x].size();j++){
			int tmp=vec[x][j];
			//不选择该节点;
			dp[x][0]*=dp[tmp][0]+dp[tmp][1];
			dp[x][0]%=mod;
			//选择该节点;
			dp[x][1]*=dp[tmp][0];
			dp[x][1]%=mod;
		}	
	}
	int root=1;
	cout<<(dp[root][0]+dp[root][1]-1)%mod;
	return 0;
}

3.相关应用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值