1.没有上司的舞会
- 题目链接
- 参考代码:
#include<bits/stdc++.h>
using namespace std;
int dfs(int root,vector<int> &vec,
vector<vector<int>> &child,vector<int> &dp){
if(dp[root]!=0) return dp[root];
//没有选择该节点,那么可以选择子节点;
int res1=0;
for(int i=0;i<child[root].size();i++){
int tmp=child[root][i];
res1+=dfs(tmp,vec,child,dp);
}
//选择该节点,那么不可以选择子节点,但是可以选择子孙节点。
int res2=vec[root];
for(int i=0;i<child[root].size();i++){
int tmp1=child[root][i];
for(int j=0;j<child[tmp1].size();j++){
int tmp2=child[tmp1][j];
res2+=dfs(tmp2,vec,child,dp);
}
}
//记忆化搜索和树形dp核心所在;
dp[root]=max(res1,res2);
return dp[root];
}
int main()
{
int n;
vector<int> vec(n+1,0);
vector<vector<int>> child(n+1,vector<int>());
vector<int> dp(n+1,0);
vector<int> flag(n+1,0);
cin>>n;
for(int i=1;i<=n;i++) cin>>vec[i];
for(int i=0;i<n-1;i++){
int x,y;cin>>x>>y;
child[y].push_back(x);
flag[x]++;
}
int root=0;
for(int i=1;i<=n;i++){
if(flag[i]==0){
root=i;
break;
}
}
cout<<dfs(root,vec,child,dp);
return 0;
}
2.上司舞会变形
2.1 描述
- G将军有一支训练有素的军队,这个军队除开G将军外,每名士兵都有一个直接上级(可能是其他士兵,也可能是G将军)。现在G将军将接受一个特别的任务,需要派遣一部分士兵(至少一个)组成一个敢死队,为了增加敢死队队员的独立性,要求如果一名士兵在敢死队中,他的直接上级不能在敢死队中。请问,G将军有多少种派出敢死队的方法。注意,G将军也可以作为一个士兵进入敢死队。
- 输入格式:输入的第一行包含一个整数n,表示包括G将军在内的军队的人数。军队的士兵从1至n编号,G将军编号为1。接下来n-1个数,分别表示编号为2, 3, …, n的士兵的直接上级编号,编号i的士兵的直接上级的编号小于i。
- 输出格式:输出一个整数,表示派出敢死队的方案数。由于数目可能很大,你只需要输出这个数除10007的余数即可。
样例1:
输入:3 1 1
输出:4
样例说明,这四种方式分别是:选1,选2,选3,选2和3。
样例2
输入:7 1 1 2 2 3 3
输出:40
数据规模与约定
对于20%的数据,n ≤ 20;
对于40%的数据,n ≤ 100;
对于100%的数据,1 ≤ n ≤ 100000;
2.2 分析
- 首先,这道题和第一道题是同种类型的题目,只是最后要求的结果不一样,树形dp的难点在于树上做动态规划。
dp[i][0]
代表第i个节点的人不去的方案数,dp[i][1]
代表第i个节点去的方案数。难点来了, i节点去和不去的方案数和什么有关呢?仔细分析得到,如果i节点去,那么他的下属都不能去,因此dp[i][1]=dp[j][0]*dp[k][0]*dp[x][0]....(j,k,x都是i节点的下属,为什么用的是乘法呢,这是应用到了乘法原理,下边还会用到)
。同理分析可得不去的情况:dp[i][0]=dp[j][0]*dp[j][1]+dp[k][0]*dp[k][1]+dp[x][0]*dp[x][1]......
。 - 根据题目简化表达式,可以把所有人都不去的情况先算在内,最后输出答案的时候减1即可。这样的话,我们可以通过乘法原理简化出上边的代码
dp[i][0]=(dp[j][0]+dp[j][1])* (dp[k][0]+dp[k][1])*......(其中j,k,.....为孩子节点)
。 - 到此,递推公式可以写成下面的形式:
dp[i][1]=dp[j][0]*dp[k][0]*dp[x][0].....; //其中j,k,x都是i节点的下属;
dp[i][0]=(dp[j][0]+dp[j][1])*·········; //其中j为i的子节点;
- 最后,就是如上的代码,得到的递推式最终形式:
dp[i][1]*=dp[m[i][j]][0];
dp[i][0]*=(dp[m[i][j]][0]+dp[m[i][j]][1]);
//其中m[i][j]就是i节点的子节点,j=0,1,2,3.....;
- 然后把每个节点的初始值为1。当节点为叶子时,没有下属,他去和不去只和他自己有关,去是一种方案,不去是另外一种方案,最后的方案总数应该是根节点去dp[root][1]和不去dp[root][0]之和,再减去所有人都不去的情况。
2.3 参考代码
#include<bits/stdc++.h>
using namespace std;
const int mod=10007;
const int N=100000+5;
vector<vector<int>> vec(N);
vector<vector<int>> dp(N,vector<int>(2,1));
int dfs(int x){
for(int i=0;i<vec[x].size();i++){
int tmp=vec[x][i];
dfs(tmp);
//不选择该节点;
dp[x][0]*=dp[tmp][0]+dp[tmp][1];
dp[x][0]%=mod;
//选择该节点;
dp[x][1]*=dp[tmp][0];
dp[x][1]%=mod;
}
}
int main()
{
int n;cin>>n;
for(int i=2;i<=n;i++){
int x;cin>>x;
vec[x].push_back(i);
}
int root=1;
dfs(root);
cout<<(dp[root][0]+dp[root][1]-1)%mod;
return 0;
}
2.4 改进
- 虽然使用递归可以解决问题,但是该题的数据规模比较大,不适合使用递归,因此,我们选择使用迭代的方式解决(前提是题目提示编号i的士兵的直接上级的编号小于i),代码是差不多相同的。
- 参考代码:
#include<bits/stdc++.h>
using namespace std;
const int mod=10007;
const int N=100000+5;
vector<vector<int>> vec(N);
vector<vector<int>> dp(N,vector<int>(2,1));
int main()
{
int n;cin>>n;
for(int i=2;i<=n;i++){
int x;cin>>x;
vec[x].push_back(i);
}
for(int x=n;x>=1;x--){
for(int j=0;j<vec[x].size();j++){
int tmp=vec[x][j];
//不选择该节点;
dp[x][0]*=dp[tmp][0]+dp[tmp][1];
dp[x][0]%=mod;
//选择该节点;
dp[x][1]*=dp[tmp][0];
dp[x][1]%=mod;
}
}
int root=1;
cout<<(dp[root][0]+dp[root][1]-1)%mod;
return 0;
}