Flink之Table API 与 SQL

Table API 是流处理和批处理通用的关系型 API,Table API 可以基于流输入或者批输入来运行而不需要进行任何修改。Table API 是 SQL 语言的超集并专门为 Apache Flink 设计的,Table API 是 Scala 和 Java 语言集成式的 API。与常规 SQL 语言中将查询指定为字符串不同,Table API 查询是以 Java 或 Scala 中的语言嵌入样式来定义的,具有 IDE 支持如:自动完成语法检测

一、需要引入的 pom 依赖

<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-table-planner_2.12</artifactId>
	<version>1.10.1</version>
</dependency>
<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-table-api-scala-bridge_2.12</artifactId>
	<version>1.10.1</version>
</dependency>

二、简单了解 TableAPI

def main(args: Array[String]): Unit = {
  val env = StreamExecutionEnvironment.getExecutionEnvironment
  env.setParallelism(1)
  val inputStream = env.readTextFile("..\\sensor.txt")
  val dataStream = inputStream
    .map( data => {
      val dataArray = data.split(",")
      SensorReading(dataArray(0).trim, dataArray(1).trim.toLong,
        dataArray(2).trim.toDouble)
    }
    )
// 基于 env 创建 tableEnv
val settings: EnvironmentSettings =
  EnvironmentSettings.newInstance().useOldPlanner().inStreamingMode().build()
  val tableEnv: StreamTableEnvironment = StreamTableEnvironment.create(env,
    settings)
  // 从一条流创建一张表
  val dataTable: Table = tableEnv.fromDataStream(dataStream)
  // 从表里选取特定的数据
  val selectedTable: Table = dataTable.select('id, 'temperature)
    .filter("id = 'sensor_1'")
  val selectedStream: DataStream[(String, Double)] = selectedTable
    .toAppendStream[(String, Double)]
  selectedStream.print()
  env.execute("table test")
}

2.1 动态表

如果流中的数据类型是 case class 可以直接根据 case class 的结构生成 table

tableEnv.fromDataStream(dataStream)

或者根据字段顺序单独命名

tableEnv.fromDataStream(dataStream,’id,’timestamp .......)

最后的动态表可以转换为流进行输出

table.toAppendStream[(String,String)]

2.2 字段

用一个单引放到字段前面来标识字段名, 如 ‘name , ‘id ,’amount 等

三、Table API 的窗口聚合操作

3.1 通过一个例子了解 TableAPI

// 统计每 10 秒中每个传感器温度值的个数
def main(args: Array[String]): Unit = {
  val env = StreamExecutionEnvironment.getExecutionEnvironment
  env.setParallelism(1)
  env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
  val inputStream = env.readTextFile("..\\sensor.txt")
  val dataStream = inputStream
    .map( data => {
      val dataArray = data.split(",")
      SensorReading(dataArray(0).trim, dataArray(1).trim.toLong,
        dataArray(2).trim.toDouble)
    }
    )
    .assignTimestampsAndWatermarks(new
        BoundedOutOfOrdernessTimestampExtractor[SensorReading](Time.seconds(1)) {
      override def extractTimestamp(element: SensorReading): Long =
        element.timestamp * 1000L
    })
  // 基于 env 创建 tableEnv
  val settings: EnvironmentSettings =
    EnvironmentSettings.newInstance().useOldPlanner().inStreamingMode().build()
  val tableEnv: StreamTableEnvironment = StreamTableEnvironment.create(env,
    settings)
  // 从一条流创建一张表,按照字段去定义,并指定事件时间的时间字段
  val dataTable: Table = tableEnv.fromDataStream(dataStream, 'id,
    'temperature, 'ts.rowtime)
  // 按照时间开窗聚合统计
  val resultTable: Table = dataTable
    .window( Tumble over 10.seconds on 'ts as 'tw )
    .groupBy('id, 'tw)
    .select('id, 'id.count)
  val selectedStream: DataStream[(Boolean, (String, Long))] = resultTable
    .toRetractStream[(String, Long)]
  selectedStream.print()
  env.execute("table window test")
}

3.2 关于 group by

(1)如果了使用 groupby,table 转换为流的时候只能用 toRetractDstream

val dataStream: DataStream[(Boolean, (String, Long))] = table
.toRetractStream[(String,Long)]

(2)toRetractDstream 得到的第一个 boolean 型字段标识 true 就是最新的数据(Insert),false 表示过期老数据(Delete)

val dataStream: DataStream[(Boolean, (String, Long))] = table
.toRetractStream[(String,Long)]
dataStream.filter(_._1).print()

(3)如果使用的 api 包括时间窗口,那么窗口的字段必须出现在 groupBy 中。

val resultTable: Table = dataTable
.window( Tumble over 10.seconds on 'ts as 'tw )
.groupBy('id, 'tw)
.select('id, 'id.count)

3.3 关于时间窗口

(1)用到时间窗口,必须提前声明时间字段,如果是 processTime 直接在创建动态表时进行追加就可以。

val dataTable: Table = tableEnv.fromDataStream(dataStream, 'id,
'temperature, 'ps.proctime)

(2)如果是 EventTime 要在创建动态表时声明

val dataTable: Table = tableEnv.fromDataStream(dataStream, 'id,
'temperature, 'ts.rowtime)

(3)滚动窗口可以使用 Tumble over 10000.millis on 来表示

val resultTable: Table = dataTable
.window( Tumble over 10.seconds on 'ts as 'tw )
.groupBy('id, 'tw)
.select('id, 'id.count)

四、SQL 如何编写

// 统计每 10 秒中每个传感器温度值的个数
def main(args: Array[String]): Unit = {
  val env = StreamExecutionEnvironment.getExecutionEnvironment
  env.setParallelism(1)
  env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
  val inputStream = env.readTextFile("..\\sensor.txt")
  val dataStream = inputStream
    .map( data => {
      val dataArray = data.split(",")
      SensorReading(dataArray(0).trim, dataArray(1).trim.toLong,
        dataArray(2).trim.toDouble)
    }
    )
    .assignTimestampsAndWatermarks(new
        BoundedOutOfOrdernessTimestampExtractor[SensorReading](Time.seconds(1)) {
      override def extractTimestamp(element: SensorReading): Long =
        element.timestamp * 1000L
    })
  // 基于 env 创建 tableEnv
  val settings: EnvironmentSettings =
    EnvironmentSettings.newInstance().useOldPlanner().inStreamingMode().build(
    )
  val tableEnv: StreamTableEnvironment = StreamTableEnvironment.create(env,
    settings)
  // 从一条流创建一张表,按照字段去定义,并指定事件时间的时间字段
  val dataTable: Table = tableEnv.fromDataStream(dataStream, 'id,
    'temperature, 'ts.rowtime)
  // 直接写 sql 完成开窗统计
  val resultSqlTable: Table = tableEnv.sqlQuery("select id, count(id) from "
    + dataTable + " group by id, tumble(ts, interval '15' second)")
  val selectedStream: DataStream[(Boolean, (String, Long))] =
    resultSqlTable.toRetractStream[(String, Long)]
  selectedStream.print()
  env.execute("table window test")
}
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页