Chapter 18 Probability
Experimental probability
E x p e r i m e n t a l p r o b o b i l i t y = r e a l a t i v e f r e q u e n c y = p a r t i c u l a r o u t c o m e n u m b e r o f t o t a l s \rm{Experimental\ probobility} = \rm{realative\ frequency} = \frac{\rm{particular\ outcome}}{\rm{number\ of\ totals}} Experimental probobility=realative frequency=number of totalsparticular outcome
Space union
Space unit
U
U
U: set of all possible outcomes of an experiment
e.g. For coin:
U
=
{
H
,
T
}
U = \{H, T\}
U={H,T},
for die:
U
=
{
1
,
2
,
3
,
4
,
5
,
6
}
U = \{1,2,3,4,5,6\}
U={1,2,3,4,5,6},
for two coins:
U
=
{
H
H
,
H
T
,
T
H
,
T
T
}
U = \{HH, HT, TH, TT\}
U={HH,HT,TH,TT},
or dot-grid like:
| | |
T|-.-,-
H|-.-.-
|_|_|__
H T
or Tree diagram
Theoretical probability
For an event
E
E
E contain equal likely possible results, probability of
E
E
E:
P
(
E
)
=
n
(
E
)
n
(
U
)
P(E) = \frac{n(E)}{n(U)}
P(E)=n(U)n(E)
Complementary: two events are complementary if their probability add up to 1
P
(
E
)
+
P
(
E
′
)
=
1
→
E
a
n
d
E
′
a
r
e
c
o
m
p
l
e
m
e
n
t
a
r
y
e
v
e
n
t
s
P(E) + P(E') = 1 \to E \rm\ {and}\ E' \ \rm{are\ complementary\ events}
P(E)+P(E′)=1→E and E′ are complementary events
Compound event
Depencency events
If
A
A
A and
B
B
B are two events that one’s occurance won’t affect another’s occurance, they are indepencency events,
P
(
A
a
n
d
B
)
=
P
(
A
)
×
P
(
B
)
P(A\ and\ B) = P(A) \times P(B)
P(A and B)=P(A)×P(B)
Independency events
If
A
A
A and
B
B
B are two events that one’s occurance affect another,
A
A
A and
B
B
B are independent events,
P
(
A
a
n
d
B
)
=
P
(
A
)
×
P
(
B
∣
A
)
P(A\ and\ B) = P(A) \times P(B | A)
P(A and B)=P(A)×P(B∣A)
P
(
B
∣
A
)
P(B | A)
P(B∣A) means probability of
A
A
A given that
B
B
B occur.
Sampling with/without replacement
e.g.
U
=
{
R
,
R
,
R
,
B
,
B
,
Y
}
U = \{R,R,R,B,B,Y\}
U={R,R,R,B,B,Y}. Get 2 from it. Ask: probability of
{
R
,
R
}
\{R,R\}
{R,R}
replacement:
3
3
+
2
+
1
×
3
3
+
2
+
1
=
1
4
\frac{3}{3 + 2 + 1} \times \frac{3}{3 + 2 + 1} = \frac{1}{4}
3+2+13×3+2+13=41
WITHOUT replacement:
3
3
+
2
+
1
×
2
2
+
2
+
1
=
1
5
\frac{3}{3 + 2 + 1} \times \frac{2}{2 + 2 + 1} = \frac{1}{5}
3+2+13×2+2+12=51
Bionomial probability
For a die with four faces
U
=
{
R
,
R
,
B
,
B
,
B
,
B
}
U = \{R,R,B,B,B,B\}
U={R,R,B,B,B,B}, row three times.
It has possible outcomes:
{
R
,
R
,
R
}
{
R
,
R
,
B
}
,
{
R
,
B
,
R
}
,
{
B
,
R
,
R
}
{
R
,
B
,
B
}
,
{
B
,
R
,
B
}
,
{
B
,
B
,
R
}
{
B
B
B
}
\{R,R,R\}\\ \{R,R,B\}, \{R,B,R\}, \{B,R,R\}\\ \{R,B,B\}, \{B,R,B\}, \{B,B,R\}\\ \{BBB\}
{R,R,R}{R,R,B},{R,B,R},{B,R,R}{R,B,B},{B,R,B},{B,B,R}{BBB}
P ( 3 R ) : P ( 2 R 1 B ) : P ( 2 B 1 R ) : P ( 3 B ) = 1 : 3 : 3 : 1 P(3R) : P(2R1B) : P(2B1R) : P(3B) = 1 : 3 : 3 : 1 P(3R):P(2R1B):P(2B1R):P(3B)=1:3:3:1
For each die row: P ( R ) = 1 3 , P ( B ) = 2 3 P(R) = \frac{1}{3}, P(B) = \frac{2}{3} P(R)=31,P(B)=32
If E E E is an event with probability p p p of occuring; its complementary event E ′ E' E′ has probability q − 1 − p q - 1 - p q−1−p of occuring, then probability generator for the various outcomes over n n n independency trials is ( p + q ) n (p + q)^n (p+q)n
for
n
n
n times trial which has outcome
E
E
E with probability
p
p
p and outcome
E
′
E'
E′ with probability
q
q
q,
P
(
E
o
c
c
u
r
s
x
t
i
m
e
s
a
n
d
E
′
o
c
c
u
r
s
n
−
x
t
i
m
e
s
)
=
n
C
x
p
x
q
n
−
x
P(E\ occurs\ x\ times\ and\ E'\ occurs\ n-x\ times) = ^nC_x p^x q^{n - x}
P(E occurs x times and E′ occurs n−x times)=nCxpxqn−x
Explain: For n n n trails, in particular x x x trails E E E occurs and in other trails E ′ E' E′ occurs. the probobility is p x q n − x p^x q^{n - x} pxqn−x. Since this specific x x x trails can be any of the n n n trails, there are n C r ^nC_r nCr possibilities. So the probability of x x x times of E E E and n − x n - x n−x times of E ′ E' E′ is n C r p x q n − x ^nC_r p^x q^{n - x} nCrpxqn−x
Set and Venn diagram
P
(
A
)
+
P
(
A
′
)
=
1
A
∪
B
=
{
x
∣
x
∈
A
o
r
x
∈
B
}
A
∩
B
=
{
x
∣
x
∈
A
a
n
d
x
∈
B
}
P(A) + P(A') = 1 \\ A \cup B = \{x | x \in A\ or\ x \in B\} \\ A \cap B = \{x | x \in A\ and\ x \in B\}
P(A)+P(A′)=1A∪B={x∣x∈A or x∈B}A∩B={x∣x∈A and x∈B}
When A ∩ B = ϕ A \cap B = \phi A∩B=ϕ, A A A and B B B are called mutually exclusive.
for event
A
A
A and
B
B
B:
P
(
A
∪
B
)
=
P
(
A
)
+
P
(
B
)
−
P
(
A
∩
B
)
P(A \cup B) = P(A) + P(B) - P(A \cap B)
P(A∪B)=P(A)+P(B)−P(A∩B)
or
P
(
e
i
t
h
e
r
A
o
r
B
)
=
P
(
A
)
+
P
(
B
)
−
P
(
b
o
t
h
A
a
n
d
B
)
P(either\ A\ or\ B) = P(A) + P(B) - P(both\ A\ and\ B)
P(either A or B)=P(A)+P(B)−P(both A and B)
If
A
A
A and
B
B
B are mutually exclusive,
P
(
A
∩
B
)
=
0
∴
P
(
A
∪
B
)
=
P
(
A
)
+
P
(
B
)
P(A \cap B) = 0 \\ \therefore P(A \cup B) = P(A) + P(B)
P(A∩B)=0∴P(A∪B)=P(A)+P(B)
For events
A
A
A and
B
B
B:
P
(
A
∣
B
)
=
P
(
A
∩
B
)
P
(
B
)
P(A | B) = \frac{P(A \cap B)}{P(B)}
P(A∣B)=P(B)P(A∩B)
Proof:
P
(
A
∣
B
)
=
b
b
+
c
P
(
B
)
=
b
+
c
a
+
b
+
c
+
d
P
(
A
∩
B
)
=
b
a
+
b
+
c
+
d
∴
P
(
A
∩
B
)
P
(
B
)
=
b
b
+
c
=
P
(
A
∣
B
)
∴
P
(
A
∣
B
)
=
P
(
A
∩
B
)
P
(
B
)
\begin{aligned} P(A | B) &= \frac{b}{b + c} \\ P(B) &= \frac{b + c}{a + b + c + d} \\ P(A \cap B) &= \frac{b}{a + b + c + d} \\ \therefore \frac{P(A \cap B)}{P(B)} &=\frac{b}{b + c} = P(A | B) \\ \\ \therefore P(A | B) &= \frac{P(A \cap B)}{P(B)} \end{aligned}
P(A∣B)P(B)P(A∩B)∴P(B)P(A∩B)∴P(A∣B)=b+cb=a+b+c+db+c=a+b+c+db=b+cb=P(A∣B)=P(B)P(A∩B)
Independent event
Event
A
A
A and
B
B
B are independent if occurance of each one of them don’t affect the occurance of another. In this situation
P
(
A
∣
B
)
=
P
(
A
)
P
(
B
∣
A
)
=
P
(
B
)
\begin{aligned} P(A | B) = P(A) \\ P(B | A) = P(B) \end{aligned}
P(A∣B)=P(A)P(B∣A)=P(B)
So
P
(
A
∩
B
)
=
P
(
A
)
×
P
(
B
)
P(A \cap B) = P(A) \times P(B)
P(A∩B)=P(A)×P(B)
Probability using P&C
e.g. randomly select 7 people from 8 boys and 7 girls
Probability
P
P
P of 4 boys and 3 girls:
P
=
8
C
4
×
7
C
3
15
C
7
P = \frac{^8C_4 \times ^7C_3}{^{15}C_7}
P=15C78C4×7C3
Bayes law
U
U
U is partitioned into two mutually exclusive region:
A
A
A and its complementary
A
′
A'
A′. Then gove another event B.
We have
P
(
A
∣
B
)
=
P
(
B
∣
A
)
P
(
A
)
P
(
B
)
o
r
P
(
B
)
=
P
(
B
∣
A
)
P
(
A
)
P
(
A
∣
B
)
\begin{aligned} P(A | B) &= \frac{P(B | A) P(A)}{P(B)} \\ or\ P(B) &= \frac{P(B | A) P(A)}{P(A | B)} \end{aligned}
P(A∣B)or P(B)=P(B)P(B∣A)P(A)=P(A∣B)P(B∣A)P(A)
Proof:
P
(
A
∣
B
)
=
P
(
A
∩
B
)
P
(
B
)
P
(
B
∣
A
)
=
P
(
A
∩
B
)
P
(
A
)
P
(
A
∩
B
)
=
P
(
B
∣
A
)
P
(
A
)
P
(
A
∣
B
)
=
P
(
B
∣
A
)
P
(
A
)
P
(
B
)
o
r
P
(
B
)
=
P
(
B
∣
A
)
P
(
A
)
P
(
A
∣
B
)
\begin{aligned} P(A | B) &= \frac{P(A \cap B)}{P(B)} \\ P(B | A) &= \frac{P(A \cap B)}{P(A)} \\ P(A \cap B) &= P(B | A) P(A) \\ P(A | B) &= \frac{P(B | A) P(A)}{P(B)} \\ or\ P(B) &= \frac{P(B | A) P(A)}{P(A | B)} \end{aligned}
P(A∣B)P(B∣A)P(A∩B)P(A∣B)or P(B)=P(B)P(A∩B)=P(A)P(A∩B)=P(B∣A)P(A)=P(B)P(B∣A)P(A)=P(A∣B)P(B∣A)P(A)
【未完】