IB Math HL Probability, Distribution章节学习笔记

Chapter 18 Probability

Experimental probability

E x p e r i m e n t a l   p r o b o b i l i t y = r e a l a t i v e   f r e q u e n c y = p a r t i c u l a r   o u t c o m e n u m b e r   o f   t o t a l s \rm{Experimental\ probobility} = \rm{realative\ frequency} = \frac{\rm{particular\ outcome}}{\rm{number\ of\ totals}} Experimental probobility=realative frequency=number of totalsparticular outcome


Space union

Space unit U U U: set of all possible outcomes of an experiment
e.g. For coin: U = { H , T } U = \{H, T\} U={H,T},
for die: U = { 1 , 2 , 3 , 4 , 5 , 6 } U = \{1,2,3,4,5,6\} U={1,2,3,4,5,6},
for two coins: U = { H H , H T , T H , T T } U = \{HH, HT, TH, TT\} U={HH,HT,TH,TT},
or dot-grid like:

  | | |
 T|-.-,-
 H|-.-.-
  |_|_|__
    H T

or Tree diagram


Theoretical probability

For an event E E E contain equal likely possible results, probability of E E E:
P ( E ) = n ( E ) n ( U ) P(E) = \frac{n(E)}{n(U)} P(E)=n(U)n(E)

Complementary: two events are complementary if their probability add up to 1
P ( E ) + P ( E ′ ) = 1 → E   a n d   E ′   a r e   c o m p l e m e n t a r y   e v e n t s P(E) + P(E') = 1 \to E \rm\ {and}\ E' \ \rm{are\ complementary\ events} P(E)+P(E)=1E and E are complementary events


Compound event

Depencency events

If A A A and B B B are two events that one’s occurance won’t affect another’s occurance, they are indepencency events,
P ( A   a n d   B ) = P ( A ) × P ( B ) P(A\ and\ B) = P(A) \times P(B) P(A and B)=P(A)×P(B)

Independency events

If A A A and B B B are two events that one’s occurance affect another, A A A and B B B are independent events,
P ( A   a n d   B ) = P ( A ) × P ( B ∣ A ) P(A\ and\ B) = P(A) \times P(B | A) P(A and B)=P(A)×P(BA)
P ( B ∣ A ) P(B | A) P(BA) means probability of A A A given that B B B occur.


Sampling with/without replacement

e.g. U = { R , R , R , B , B , Y } U = \{R,R,R,B,B,Y\} U={R,R,R,B,B,Y}. Get 2 from it. Ask: probability of { R , R } \{R,R\} {R,R}
replacement:
3 3 + 2 + 1 × 3 3 + 2 + 1 = 1 4 \frac{3}{3 + 2 + 1} \times \frac{3}{3 + 2 + 1} = \frac{1}{4} 3+2+13×3+2+13=41
WITHOUT replacement:
3 3 + 2 + 1 × 2 2 + 2 + 1 = 1 5 \frac{3}{3 + 2 + 1} \times \frac{2}{2 + 2 + 1} = \frac{1}{5} 3+2+13×2+2+12=51


Bionomial probability

二项分布

For a die with four faces U = { R , R , B , B , B , B } U = \{R,R,B,B,B,B\} U={R,R,B,B,B,B}, row three times.
It has possible outcomes:
{ R , R , R } { R , R , B } , { R , B , R } , { B , R , R } { R , B , B } , { B , R , B } , { B , B , R } { B B B } \{R,R,R\}\\ \{R,R,B\}, \{R,B,R\}, \{B,R,R\}\\ \{R,B,B\}, \{B,R,B\}, \{B,B,R\}\\ \{BBB\} {R,R,R}{R,R,B},{R,B,R},{B,R,R}{R,B,B},{B,R,B},{B,B,R}{BBB}

P ( 3 R ) : P ( 2 R 1 B ) : P ( 2 B 1 R ) : P ( 3 B ) = 1 : 3 : 3 : 1 P(3R) : P(2R1B) : P(2B1R) : P(3B) = 1 : 3 : 3 : 1 P(3R):P(2R1B):P(2B1R):P(3B)=1:3:3:1

For each die row: P ( R ) = 1 3 , P ( B ) = 2 3 P(R) = \frac{1}{3}, P(B) = \frac{2}{3} P(R)=31,P(B)=32

If E E E is an event with probability p p p of occuring; its complementary event E ′ E' E has probability q − 1 − p q - 1 - p q1p of occuring, then probability generator for the various outcomes over n n n independency trials is ( p + q ) n (p + q)^n (p+q)n

for n n n times trial which has outcome E E E with probability p p p and outcome E ′ E' E with probability q q q,
P ( E   o c c u r s   x   t i m e s   a n d   E ′   o c c u r s   n − x   t i m e s ) = n C x p x q n − x P(E\ occurs\ x\ times\ and\ E'\ occurs\ n-x\ times) = ^nC_x p^x q^{n - x} P(E occurs x times and E occurs nx times)=nCxpxqnx

Explain: For n n n trails, in particular x x x trails E E E occurs and in other trails E ′ E' E occurs. the probobility is p x q n − x p^x q^{n - x} pxqnx. Since this specific x x x trails can be any of the n n n trails, there are n C r ^nC_r nCr possibilities. So the probability of x x x times of E E E and n − x n - x nx times of E ′ E' E is n C r p x q n − x ^nC_r p^x q^{n - x} nCrpxqnx


Set and Venn diagram

venn_1
P ( A ) + P ( A ′ ) = 1 A ∪ B = { x ∣ x ∈ A   o r   x ∈ B } A ∩ B = { x ∣ x ∈ A   a n d   x ∈ B } P(A) + P(A') = 1 \\ A \cup B = \{x | x \in A\ or\ x \in B\} \\ A \cap B = \{x | x \in A\ and\ x \in B\} P(A)+P(A)=1AB={xxA or xB}AB={xxA and xB}

When A ∩ B = ϕ A \cap B = \phi AB=ϕ, A A A and B B B are called mutually exclusive.

for event A A A and B B B:
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A \cup B) = P(A) + P(B) - P(A \cap B) P(AB)=P(A)+P(B)P(AB)
or
P ( e i t h e r   A   o r   B ) = P ( A ) + P ( B ) − P ( b o t h   A   a n d   B ) P(either\ A\ or\ B) = P(A) + P(B) - P(both\ A\ and\ B) P(either A or B)=P(A)+P(B)P(both A and B)

If A A A and B B B are mutually exclusive,
P ( A ∩ B ) = 0 ∴ P ( A ∪ B ) = P ( A ) + P ( B ) P(A \cap B) = 0 \\ \therefore P(A \cup B) = P(A) + P(B) P(AB)=0P(AB)=P(A)+P(B)

For events A A A and B B B:
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A | B) = \frac{P(A \cap B)}{P(B)} P(AB)=P(B)P(AB)

在这里插入图片描述
Proof:
P ( A ∣ B ) = b b + c P ( B ) = b + c a + b + c + d P ( A ∩ B ) = b a + b + c + d ∴ P ( A ∩ B ) P ( B ) = b b + c = P ( A ∣ B ) ∴ P ( A ∣ B ) = P ( A ∩ B ) P ( B ) \begin{aligned} P(A | B) &= \frac{b}{b + c} \\ P(B) &= \frac{b + c}{a + b + c + d} \\ P(A \cap B) &= \frac{b}{a + b + c + d} \\ \therefore \frac{P(A \cap B)}{P(B)} &=\frac{b}{b + c} = P(A | B) \\ \\ \therefore P(A | B) &= \frac{P(A \cap B)}{P(B)} \end{aligned} P(AB)P(B)P(AB)P(B)P(AB)P(AB)=b+cb=a+b+c+db+c=a+b+c+db=b+cb=P(AB)=P(B)P(AB)


Independent event

Event A A A and B B B are independent if occurance of each one of them don’t affect the occurance of another. In this situation
P ( A ∣ B ) = P ( A ) P ( B ∣ A ) = P ( B ) \begin{aligned} P(A | B) = P(A) \\ P(B | A) = P(B) \end{aligned} P(AB)=P(A)P(BA)=P(B)

So
P ( A ∩ B ) = P ( A ) × P ( B ) P(A \cap B) = P(A) \times P(B) P(AB)=P(A)×P(B)


Probability using P&C

e.g. randomly select 7 people from 8 boys and 7 girls
Probability P P P of 4 boys and 3 girls:
P = 8 C 4 × 7 C 3 15 C 7 P = \frac{^8C_4 \times ^7C_3}{^{15}C_7} P=15C78C4×7C3


Bayes law

U U U is partitioned into two mutually exclusive region: A A A and its complementary A ′ A' A. Then gove another event B.
在这里插入图片描述
We have
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) o r   P ( B ) = P ( B ∣ A ) P ( A ) P ( A ∣ B ) \begin{aligned} P(A | B) &= \frac{P(B | A) P(A)}{P(B)} \\ or\ P(B) &= \frac{P(B | A) P(A)}{P(A | B)} \end{aligned} P(AB)or P(B)=P(B)P(BA)P(A)=P(AB)P(BA)P(A)

Proof:
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P ( B ∣ A ) = P ( A ∩ B ) P ( A ) P ( A ∩ B ) = P ( B ∣ A ) P ( A ) P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) o r   P ( B ) = P ( B ∣ A ) P ( A ) P ( A ∣ B ) \begin{aligned} P(A | B) &= \frac{P(A \cap B)}{P(B)} \\ P(B | A) &= \frac{P(A \cap B)}{P(A)} \\ P(A \cap B) &= P(B | A) P(A) \\ P(A | B) &= \frac{P(B | A) P(A)}{P(B)} \\ or\ P(B) &= \frac{P(B | A) P(A)}{P(A | B)} \end{aligned} P(AB)P(BA)P(AB)P(AB)or P(B)=P(B)P(AB)=P(A)P(AB)=P(BA)P(A)=P(B)P(BA)P(A)=P(AB)P(BA)P(A)

【未完】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值