概率质量函数(Probability Mass Function)和期望课程笔记

本文介绍了概率论中的随机变量概念,包括样本空间、概率质量函数(PMF)的定义及其性质。讨论了Bernoulli、指示器、离散均匀以及几何随机变量,并详细讲解了随机变量的期望值(期望)及其计算规则,包括线性性质和对不同类型的随机变量(如Bernoulli和指示器)的期望值计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随机变量的数学定义

从样本空间到实数值的映射函数。


一个样本空间可以定义多个随机变量

一个或几个随机变量的函数构成一个新的随机变量


概率质量函数的定义

pX(x)=P(X=x)=P({ ωΩ s.t.X(ω)=x})

上面公式的含义为在随机变量X的映射函数下,所有样本空间中的结果在此映射下输出结果为x的概率。

属性如下:

  1. pX(x)0
  2. xpX(x)=1

Bernoulli和指示器随机变量

Bernoulli随机变量定义

X={ 1,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值