论文阅读:智能机器故障诊断方法综述Applications of machine learning to machine fault diagnosis: A review and roadmap

论文链接:link
在这里插入图片描述 2020年雷亚国西交团队

文章目录


翻译文档整理为了一个word文档, 下载链接

1 介绍

 故障诊断(Fault diagnosis)
——目标:有一种自动的方法来缩短维护周期,提高诊断的准确性;期望故障诊断过程智能化到能够自动检测和识别机器的健康状态的程度。
 智能故障诊断(IFD):是指将人工神经网络(ANN)、支持向量机(SVM)、深度神经网络(DNN)等机器学习理论应用于机器故障诊断。
具体来说,IFD旨在构建能够自动连接收集的数据和机器健康状态之间关系的诊断模型。
 将IFD的研究大致分为三个阶段,如图:

  1. 过去:(1980s~2010s)许多传统理论在这一时期被发明,如ANN 、SVM、k近邻(kNN)和概率图模型(PGM)。
  • 在这些方法中,采集到的数据进行手工地提取故障特征,然后选取敏感特征训练出诊断模型。
  1. 现在:(2010s~2020s)深度学习理论对IFD进行了改革。为了解决两大问题:手工特征提取仍然依赖人工;传统模型面对日益增长的数据诊断性能较低。
  • 深度学习代表性算法如自编码器(AE)、受限玻尔兹曼机 (RBM)、深度信念网络(DBN)、卷积神经网络(CNN)等,这些理论进一步启发了IFD的发展。
  • 深度学习模型从采集的数据中自动学习故障特征,并尝试在处理日益增长的数据时提供端到端诊断模型。这些模型将直接将原始监控数据连接到它们相应的机器健康状态,从而进一步释放IFD中人类劳动的贡献。
  1. 将来:(2020s~2030s)迁移学习将推动工程情景下IFD的研究,因为工程中往往缺乏足够的标记数据。
  • 之前的模型前提假设会不切实际主要因为:首先,实际运行会收集大量健康数据,而故障数据却不足;其次,获取收集数据 (即数据标签)往往费工费时。所以往往收集的数据不足以训练出可靠的诊断模型。
  • 迁移学习(Transfer learning)将从一个或多个任务中学习到的知识应用到其他相关新任务。其代表性的模型有:转移成分分析(transfer component analysis, TCA)、联合分布适应(joint distribution adaptation, IDA)、TrAdaboost等;CV领域:转移去噪自编码器(transfer denoising autoencoder, TDA) 、联合自适应网络(transfer denoising autoencoder, JAN)
  • 迁移学习理论有望克服缺乏标记样本的问题,最终扩大IFD在工程情景中的应用。

2 过去:基于传统机器学习理论的IFD问题

2.1 概述

 故障诊断需要引入智能方法的动机
传统的故障诊断过程主要是通过人工检查机器的健康状态来进行的,这增加了劳动强度,降低了诊断的准确性;即使引入一些先进的信号处理方法能够帮助分类哪些类型的故障。然而这些方法都依赖于专业知识,并且这些方法的诊断结果过于专门化,无法被用户所理解。
 基于传统机器学习的IFD诊断步骤

2.2 Step1:数据采集

在数据采集步骤中,传感器安装在机器上,不断地收集数据。

  • 通常采用不同的传感器,如振动、声发射、温度和电流互感器。其中,振动数据被广泛应用于轴承和齿轮箱的故障诊断。声发射数据有潜力检测轴承和齿轮的早期故障和变形,特别是在低 速运行条件下和低频噪声环境下。瞬时转速数据是发动机故障诊断中常用的数据,具有很强的抗干扰能力。电流数据在电动机械的故障诊断中起着重要的作用。
  • 此外,来自多源传感器的数据具有互补的信息,与仅使用单个传感器的数据相比,可以将这些进行信息融合,实现更高的诊断准确率。

2.3 Step2:手工特征提取

人工特征提取包括两个步骤。
1、 从采集的数据中提取时域、频域特征和时频域特征。这些特性包含反映计算机运行状况状态的运行状况信息。
2、 其次,特征选择方法。如过滤器、包装器和嵌入式方法,用于从提取的特征中选择对机器健康状态敏感的特征。这有利于消除冗余信息,进一步提高诊断结果。
下面详细介绍这两个步骤。

2.3.1. 特征提取Feature extraction

常用的特征可以从时域、频域分析或时频域中提取。
1、 时域特征可分为维度特征和无维度特征。前者包括平均值、标准差、幅值根、均方根、峰值等(mean, standard deviation, root amplitude, root mean square, peak value, etc.),受机器速度和负荷的影响。后者主要包括形状指示器、偏度指示器、峰度指示器、波峰指示器、间隙指示器、脉冲指示器(shape indicator, skewness, kurtosis, crest indicator, clearance indicator, impulse indicator, etc.)等,对机器的运行条件具有鲁棒性。
2、 频域特征是从频谱中提取的,如平均频率、频率中心、均方根频率、标准差频率(mean frequency, frequency center, root mean square frequency, standard deviation frequency, etc.)等。它们包含了在时域特征中无法找到的信息。
3、 时频域特征如能量熵(energy entropy)等通常采用小波变换(WT)、小波包变换(WPT)或经验模型分解(EMD)等方法提取。这些特性能够反映机器在非平稳运行条件下的健康状态。

2.3.2. 特征筛选Feature selection

从时域、频域和时频域提取的特征包含了冗余信息。它们可能会加重计算成本,甚至导致维度灾难(Curse of Dimensionality)。为了削弱这个问题,需要从收集的数据中选择对机器健康状态敏感的特征。它们可以分为三类。

2.3.2.1 基于过滤器的方法 Filter-based

过滤器直接对收集到的特征进行预处理,这些特征独立于分类器的训练。下面简要介绍一些过滤器。
1、 Relief和Relief- f通过构建一个相关指标来确定特征对机器健康状态的敏感性
2、 信息增益和增益比,也是两种常用的特征选择方法。选取信息增益和增益比较大的特征对诊断模型进行训练,提高诊断结果。
3、 最小冗余最大相关性(Minimum Redundancy Maximum Relevancem, RMR),旨在选择具有最大不相似性的特征。
4、 Fisher评分,被视为特征选择的距离度量,其目标是选择一个能使类间距离最大化而类内距离最小化的特征。
5、 距离评价(Distance evaluation, DE)通过距离度量选择特征集,其中敏感特征受类内距离小、类间距离大的影响。
2.3.2.2 包装器方法 Wrapper-based
与基于过滤器的方法不同,包装器关注特征选择与训练分类器的交互。换句话说,分类器的性能被用来评估所选择的特征集。如果所选的特征子集不能产生最优的分类精度,则在下一次迭代中重新选择另一个子集,直到所选的特征使分类器的性能达到最优。拉斯维加斯包装器(Las Vegas wrapper, LVW)被广泛用于特征的选择,其中Las Vegas算法用于搜索特征子集,并考虑分类器的误差作为特征评估的度量。
2.3.2.3 嵌入方法 Embedded
嵌入式方法将特征选择融入到分类器的训练中。一般情况下,它们在分类器的优化对象上施加正则化条件,并在分类器训练完成后自动选择特征。通常考虑两个正则化术语。一个是L1正则化另一个是L2正则化。这两种方法都可以缓解在少量样本的训练中出现的过拟合问题。而L1项更倾向于获得稀疏参数,这样可以在分类中抛弃冗余特征,进一步增强分类器的分类性能。

2.4 Step 3: 健康阶段诊断

健康状态识别使用基于机器学习的诊断模型来建立选定特征与机器健康状态之间的关系。为了达到这一目的,首先使用标记样本对诊断模型进行训练。在此之后,当输入样本未标记时,模型能够识别机器的健康状态。
我们将在接下来的小节中简单介绍四种使用传统机器学习的IFD方法。

2.4.1. 基于专家系统的方法

2.4.1.1 专家系统简介

专家系统被认为是一种能够提供专家级诊断知识来解决机器诊断任务的方法,而不是大量的人工劳动。基于专家系统的诊断模型由知识库、数据集、推理引擎、用户界面和解释系统五部分组成,各部分简述如下:

  • 知识库包含了关于诊断任务的专家知识。此外,它还进一步包含故障特征,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yyy_land

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值