随机事件与随机变量

随机试验

  1. 可以在相同条件下重复进行;
  2. 结果有多种可能性,并且所有可能结果事先已知;
  3. 作一次试验究竟哪个结果出现,事先不能确定。

随机试验的所有结果的组成为样本空间,记作 Ω \Omega Ω,试验的每一个点为样本点,记作 ω \omega ω
样本空间中一般分为随机事件、必然事件、不可能事件。、

古典概率

事件A的古典概率定义为: P ( A ) = m n = 事 件 A 包 含 的 基 本 事 件 数 基 本 事 件 总 数 P(A) = \frac{m} {n} = \frac{事件A包含的基本事件数} {基本事件总数} P(A)=nm=A

条件概率

A A A B B B 是两个事件,且 P ( B ) > 0 P(B)>0 P(B)>0,称 P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B) = \frac {P(AB)} {P(B)} P(AB)=P(B)P(AB) 为在事件 B B B 发生的条件下,事件 A A A 发生的概率。

全概率公式

B 1 , B 2 , . . . B_1,B_2,... B1,B2,...是样本空间 Ω \Omega Ω 的一个划分, A A A 为任一事件,则 P ( A ) = ∑ i = 1 ∞ P ( B i ) P ( A ∣ B i ) P(A) = \sum_{i=1}^{\infty } {P(B_i)}P(A|B_i) P(A)=i=1P(Bi)P(ABi) 称为全概率公式。

贝叶斯概率公式

B 1 , B 2 , . . . B_1,B_2,... B1,B2,...是样本空间 Ω \Omega Ω 的一个划分,则对任一事件 A ( P ( A ) > 0 ) A(P(A)>0) A(P(A)>0) ,有​

P ( B i ∣ A ) = P ( B i A ) P ( A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 ∞ P ( B j ) P ( A ∣ B j ) , i = 1 , 2 , . . . P(B_i|A) =\frac {P(B_i A)} {P(A)} = \frac {P(A|B_i )P(B_i)} {\sum_{j=1}^{\infty }P( B_j)P(A|B_j)} ,i=1,2,... P(BiA)=P(A)P(BiA)=j=1P(Bj)P(ABj)P(ABi)P(Bi),i=1,2,...

称上式为贝叶斯公式,称 P ( B i ) ( i = 1 , 2 , . . . ) P(B_i)(i=1,2,...) P(Bi)(i=1,2,...) 为先验概率, P ( B i ∣ A ) ( i = 1 , 2 , . . . ) P(B_i|A)(i=1,2,...) P(BiA)i=1,2,...为后验概率。

随机变量及其分布

X X X 是一个随机变量,对任意的实数 x x x ,令
F ( x ) = P { X < = x } , x ∈ ( − ∞ , + ∞ ) F(x) = P \{ X<=x\} ,x \in (- \infty ,+ \infty) F(x)=P{X<=x},x(,+)
​ 则称 F ( x ) F(x) F(x) 为随机变量 x x x 的分布函数,也称为概率累积函数。

离散型随机变量

离散型随机变量的分布函数为:
F ( x ) = P { X < = x } = ∑ x k < = x P { X = x k } = ∑ x k < = x P k F (x) = P \{ X<=x \} =\sum_{x_k <=x}{ P \{ X=x_k \} } = \sum_{x_k <=x}{ P_k} F(x)=P{X<=x}=xk<=xP{X=xk}=xk<=xPk

常见的离散型分布

伯努利分布(二项式分布)

P ( A k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , 2 , . . . n . P(A_k) =C^k_np^k(1-p)^{n-k},k=0,1,2,...n. P(Ak=Cnkpk(1p)nk,k=0,1,2,...n.
这就是著名的二项分布,常记作 B ( n , k ) B(n,k) B(nk)

随机变量的数字特征

数学期望

离散型:

E ( X ) = ∑ i x i p i E(X) = \sum_{i} {x_ip_i} E(X)=ixipi
连续型:

E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X)= \int_{- \infty}^{+ \infty}{xf(x)}dx E(X)=+xfxdx

方差

V a r ( X ) = E { [ X − E ( X ) ] 2 } Var (X) =E\{ [X-E(X)]^2\} VarX=E{[XE(X)]2}

协方差和相关系数

协方差:

C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } Cov(X, Y) = E\{ [X-E(X)] [Y-E(Y)]\} Cov(X,Y)=E{[XE(X)][YE(Y)]}

相关系数:

ρ ( X , Y ) = C o v ( X , Y ) V a r ( X ) V a r ( Y ) \rho(X,Y) = \frac{Cov(X,Y)}{\sqrt {Var(X)} \sqrt {Var(Y)}} ρX,Y=Var(X) Var(Y) Cov(XY)

Python实现

二项式分布

def factorial(n):
    if n == 0:
        return 1;
    else:
        return (n*factorial(n-1)) 
def  Bernoulli(n, p, k):
    pk = factorial(n)/(factorial(k)*factorial(n-k)) * p**k * (1-p)**(n-k)
    return pk

协方差

def Ex(n,p,k):  #  
    a,b,c = (n,p,k)
    ex = 0
    for i in range(c):
        ex += i*Bernoulli(a,b,i)
    return ex
def Cov(n,p,x,y):
    a,b,c,d = (n,p,x,y)
    ex = Ex()
    covxy = Ex(a,b,((c-ex(a,b,c))*(d-Ex(a,b,d))))
    return covxy

相关系数

def Var(n,p,k):
    a,b,c = (n,p,k)
    var = Ex(a,b,(c-Ex(a,b,c))**2)
    return var
def Roll(n,p,x,y):
    a,b,c,d = (n,p,x,y)
    roll = Cov(a,b,c,d) / (Var(a,b,c)**0.5 * Var(a,b,d)**0.5)
    return roll

贝叶斯公式

def bayesFunc(pIsBox1, pBox1, pBox2):
    return (pIsBox1 * pBox1)/((pIsBox1 * pBox1) + (1 - pIsBox1) * pBox2)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值