第二章 lebesgue测度

第二章 lebesgue测度

前言

积分的定义以及一个函数的可积性,是与相应的下方图形面积如何确定以及面积是否存在密切相关的。于是,如果我们想要建立能够应用与更大函数类的新的积分理论,自然希望把原有的面积概念进行推广,使得更多的点集能具有类似于面积性质的新的度量。

总之,我们希望对一般 R n R^n Rn 中的点集 E E E 给予一种度量,它是长度、面积以及体积的概念的推广。如果记点集 E E E 的这种度量为 m ( E ) m(E) m(E) ,那么自然要求它具有某些常见的性质或者满足一定的条件。此时称 m ( E ) m(E) m(E) E E E测度

R R R 为例,我们提出:

  1. m ( E ) ≥ 0 m(E) \geq 0 m(E)0 ;
  2. 可 合 同 的 点 集 具 有 相 同 的 测 度 可合同的点集具有相同的测度
  3. I = ( a , b ) I=(a,b) I=(a,b) ,则 m ( I ) = b − a m(I)=b-a m(I)=ba ;
  4. E 1 , E 2 , . . . , E k , . . . E_1,E_2,...,E_k,... E1,E2,...,Ek,... 是互不相交的点集,则 m ( ∑ i = 1 ∞ E i ) = ∑ i = 1 ∞ ( E i ) m(\sum\limits_{i=1}^{\infty} E_i)=\sum\limits_{i=1}^{\infty}(E_i) m(i=1Ei)=i=1(Ei)

最后一条称为可数可加性,又称 σ − \sigma- σ 可加性。

2.1 点集的Lebesgue外测度

搬教材的话:大家知道,平面矩形的面积是长乘以宽。也就是说,取定一个标准单位——单位正方形,然后计算该矩形包含多少个正方形。但是,这种计算方法只对具有内点的点集有效。

为了对一般点集也能度量出某种“面积‘出来,我们放弃从点集内部扩张的方法,而按从其外部挤压的方法。

定义 2.1

E ⊂ R n E \subset R^n ERn ,若 { I k } \{I_k\} {Ik} R n R^n Rn 中的可数个开矩体,且有 E ⊂ ⋃ k ≥ 1 I k E \subset \bigcup\limits_{k \geq 1} I_k Ek1Ik ,则称 { I k } \{I_k\} {Ik} E E E 的一个 L − L- L覆盖

m ∗ ( E ) = i n f { ∑ k ≥ 1 ∣ I k ∣ ∣ { I k 为 E 的 L − 覆 盖 } } m^* (E)= inf\{\sum\limits_{k \geq 1}\vert I_k\vert \mid \{I_k 为 E 的L-覆盖\}\} m(E)=inf{k1Ik{IkEL}} 为点集 E E ELebesgue外测度,简称外测度

每一个L-覆盖都有体积和,取下确界就是外测度。

定理 2.1 ( R n R^n Rn 中点集的外测度性质)

  1. 非负性: m ∗ ( E ) ≥ 0 m^*(E) \geq 0 m(E)0 , m ∗ ( ϕ ) = 0 m^* (\phi) =0 m(ϕ)=0
  2. 单调性:若 E 1 ⊂ E 2 E_1 \subset E_2 E1E2,则 m ∗ ( E 1 ) ≤ m ∗ ( E 2 ) m^*(E_1) \leq m^*(E_2) m(E1)m(E2)
  3. 可加性: m ∗ ( ⋃ k = 1 ∞ E k ) ≤ ∑ k = 1 ∞ m ∗ ( E k ) m^* ( \bigcup\limits_{k=1}^{\infty} E_k) \leq \sum\limits_{k=1}^{\infty} m^* (E_k) m(k=1Ek)k=1m(Ek)

推论 2.2

E ⊂ R n E \subset R^n ERn 为可数点集, 则 m ∗ ( E ) = 0 m^* (E) =0 m(E)=0 .

单点的外测度为0,由次可加性,可数点集的外测度不大于单点集的外测度之和

定理 2.4

E 1 , E 2 E_1,E_2 E1,E2 R n R^n Rn 中的两个点集,若 d ( E 1 , E 2 ) > 0 d(E_1,E_2) >0 d(E1,E2)>0 ,则 m ∗ ( E 1 ∪ E 2 ) = m ∗ ( E 1 ) + m ∗ ( E 2 ) m^* (E_1 \cup E_2) = m^*(E_1) + m^*(E_2) m(E1E2)=m(E1)+m(E2) .

定理 2.5 (平移不变性)

E ⊂ R n , x 0 ∈ R n E \subset R^n, x_0 \in R^n ERn,x0Rn .记 E + { x 0 } = { x + x 0 , x ∈ E } E+\{x_0\} = \{x+x_0,x \in E\} E+{x0}={x+x0,xE} ,则 m ∗ ( E + { x 0 } ) = m ∗ ( E ) m^*(E + \{x_0\}) = m^*(E) m(E+{x0})=m(E) .

2.2 可测集与测度

前言

上一节指出外测度具有次可加性,集合函数 m ∗ m^* m 还不是我们所希望的测度。实际上不可能给出在 R n R^n Rn 上的一切点集都有定义的测度,也就是说有些点集不存在测度或者不可测。于是我们的任务就是在Lebesgue外测度的基础上,在 R n R^n Rn 上诱导出一个可测集合类,在其上 m ∗ m^* m 是一种期望的测度。

定义 2.2

E ⊂ R n E \subset R^n ERn ,若对任意的点集 T ⊂ R n T \subset R^n TRn ,有 m ∗ ( T ) = m ∗ ( T ∩ E ) + m ∗ ( T ∩ E c ) m^*(T)=m^*(T\cap E)+m^*(T \cap E^c) m(T)=m(TE)+m(TEc) ,则称 E 为Lebesgue可测集(或 m ∗ m^* m -可测集),简称为可测集,其中 T T T 称为 试验集 ,可测集的全体称为可测集类,简记为 M \mathscr{M} M

定理2.6(可测集的性质)

  1. ϕ ∈ M \phi \in \mathscr{M} ϕM
  2. E ∈ M E \in \mathscr{M} EM ,则 E c ∈ M E^c \in \mathscr{M} EcM
  3. E 1 ∈ M , E 2 ∈ M , E_1 \in \mathscr{M},E_2 \in \mathscr{M}, E1M,E2M, E 1 ∩ E 2 , E 1 ∪ E 2 , E 1 ∖ E 2 E_1 \cap E_2, E_1 \cup E_2, E_1 \setminus E_2 E1E2,E1E2,E1E2 均属于 M \mathscr{M} M .(由此知,可测集任何有限次取交、并运算后所得的集皆为可测集。)
  4. 若 $E_i \cap E_j = \phi $,则 m ∗ ( ⋃ i = 1 ∞ ) E i = ∑ i = 1 ∞ m ∗ ( E i ) m^*(\bigcup \limits_{i=1}^{\infty}) E_i = \sum\limits_{i=1}^{\infty} m^*(E_i) m(i=1)Ei=i=1m(Ei) .即 m ∗ m^* m M \mathscr{M} M上满足可数可加性(或称 σ \sigma σ - 可加性)

定理 2.7(递增可测集列的测度运算)

若有递增可测集列 E 1 ⊂ E 2 ⊂ . . . ⊂ E k . . . E_1 \subset E_2 \subset ... \subset E_k ... E1E2...Ek... ,则 m ( lim ⁡ k → ∞ E k ) = lim ⁡ k → ∞ m ( E k ) m(\lim\limits_{k \to \infty}E_k)=\lim\limits_{k \to \infty } m(E_k) m(klimEk)=klimm(Ek) .

推论 2.8(递减可测集列的测度运算)

若有递减可测集列 E 1 ⊃ E 2 ⊃ . . . ⊃ E k ⊃ . . . E_1 \supset E_2 \supset ...\supset E_k \supset... E1E2...Ek... ,且 $m(E_1) < +\infty $ ,则 m ( lim ⁡ k → ∞ E k ) = lim ⁡ k → ∞ m ( E k ) m(\lim\limits_{k \to \infty}E_k)=\lim\limits_{k \to \infty } m(E_k) m(klimEk)=klimm(Ek) .

Fatou 引理

{ E k } \{E_k\} {Ek} 是可测集列,则 m ( lim ⁡ k → ∞ ‾ E k ) ≤ lim ⁡ k → ∞ ‾ m ( E k ) m(\lim\limits_{\overline{k \to \infty } }E_k) \le \lim\limits_{\overline{k \to \infty }} m(E_k) m(klimEk)klimm(Ek) , m ( lim ⁡ k → ∞ ‾ E k ) ≥ lim ⁡ k → ∞ ‾ m ( E k ) m(\overline{\lim\limits_{k \to \infty}}E_k) \ge \overline{\lim\limits_{k \to \infty }}m(E_k) m(klimEk)klimm(Ek) .

写这玩意儿太累了,有空再更。

  • 3
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值