目录
测试自己代码网址
https://www.acwing.com/problem/search/1/?csrfmiddlewaretoken=R48fBpM18gvspehYEnh4S0BqfM9RioA8nP5nlEZ0Ntz54lsspwr1BFRdejt1cLy9&search_content=%E7%AC%AC%E5%8D%81%E4%B8%80%E5%B1%8A
为啥我做了个整理哈因为 每个作者写的题解 有些都过不了所有的样例 ,所以哈我就整理下(下文的都能过所有样例去ACwing上文有地址——测试),不过注明了 来源哈!
试题 D: REPEAT 程序
【问题描述】
附件 prog.txt 中是一个用某种语言写的程序。
其中 REPEAT k 表示一个次数为 k 的循环。循环控制的范围由缩进表达,从次行开始连续的缩进比该行多的(前面的空白更长的)为循环包含的内容。
例如如下片段:
REPEAT 2:
A = A + 4
REPEAT 5:
REPEAT 6:
A = A + 5
A = A + 7
A = A + 8
A = A + 9
该片段中从 A = A + 4 所在的行到 A = A + 8 所在的行都在第一行的循环两次中。
REPEAT 6: 所在的行到 A = A + 7 所在的行都在 REPEAT 5: 循环中。
A = A + 5 实际总共的循环次数是 2 × 5 × 6 = 60 次。
请问该程序执行完毕之后,A 的值是多少?
用栈来控制每行前面的缩进,缩进多了就压栈,缩进少了就弹栈,维护一个循环次数。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int MAXN = 2020;
char s[MAXN];
// a[i] -> 第 i 层循环的缩进,b[i] -> 第 i 层循环的循环次数
int a[MAXN], b[MAXN];
int main() {
freopen("prog.txt", "r", stdin);
int pos = 0, ans = 0, w = 1;
gets(s); // 读走第一行的 A = 0
a[pos] = -1, b[pos] = 1; // 防止在栈空的时候弹栈
while (gets(s)) {
int n = strlen(s), p = 0;
while (s[p] == ' ') p++; // 统计缩进
while (a[pos] >= p) w /= b[pos--];// 弹掉栈里缩进大于等于当前行的
if (s[n - 1] == ':') {
// 当前行是循环,压栈
int k = s[n - 2] - '0';
pos = pos + 1;
w *= k;
a[pos] = p, b[pos] = k;
} else {
int k = s[n - 1] - '0';
ans += k * w;
}
}
printf("%d\n", ans);
return 0;
}
上文作者
试题 E: 矩阵
【问题描述】
把 1 ∼ 2020 放在 2 × 1010 的矩阵里。要求同一行中右边的比左边大,同一 列中下边的比上边的大。一共有多少种方案?
答案很大,你只需要给出方案数除以 2020 的余数即可。
【答案提交】
这是一道结果填空题,你只需要算出结果后提交即可。本题的结果为一个 整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
答案:1340
我们从 2020 个数里选 10101010 个放入第一行,那么为了满足同一行中右边的比左边大,只能升序排列。同理剩下的 1010 个放入第二行的也要升序排列,那么只要对于任意 i∈[1,1010] 都满足第二行第 i 个大于第一行第 i 个就是一种合法方案。从前往后枚举,用dp[i][j] 表示当前枚举了 i 个数,其中 j 个放入第一行的合法方案数
#include <bits/stdc++.h>
const int maxn = 31;
int d[maxn][maxn];
int main() {
int n, m;
scanf("%d %d", &n, &m);
memset(d, 0, sizeof(d));
for(int i = 1; i <= n; ++i) {
d[i][1] = 1;
}
for(int j = 1; j <= m; ++j) {
d[1][j] = 1;
}
for(int i = 2; i <= n; ++i) {
for(int j = 2; j <= m; ++j) {
/*也可以 x % 2 ! = 0 || j % 2 != 0*/
if(i & 1 || j & 1) {
d[i][j] = d[i - 1][j] + d[i][j - 1];
}
}
}
printf("%d\n", d[n][m]);
return 0;
}
作者出处
动态规划:
f[i][j]
集合:所有第一行有 i 个数字,第二行有 j 个数字的方案的集合
属性:数量
决策:
将当前数放在第一行:f[i][j] += f[i - 1][j]
将当前数放在第二行:f[i][j] += f[i][j - 1]
#include <iostream>
using namespace std;
int f[1020][1020];
int main()
{
f[0][0] = 1; // 两行一个数字都不放,也是一种方案
for (int i = 0; i <= 1010; i ++)
for (int j = 0; j <= 1010; j ++)
{
if(i - 1 >= j) // 转移前的状态也要合法,即第一行的数量不小于第二行的数量
f[i][j