周一(10.15) TEST<18>
A - Ant Trip HDU - 3018
解题思路 并查集 + 欧拉回路
基础 并查集模板
欧拉回路 : 走完图的所有边(回到起点) (欧拉图)
欧拉通路:走完图的所有顶点(无需回到起点)(半欧拉图)
欧拉性质 : 1.有零个奇点 ,存在欧拉回路
2.有零个或两个奇点 ,存在欧拉通路
(半)欧拉图只需要一笔// 非(半/欧拉)图 奇点数/2;
AC代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int m=1e5+10;
int pre[m],ans[m],dep[m];
int n,t;
void init(){//初始化函数
for(int i=0;i<=n;i++)
pre[i]=i;
memset(ans,0,sizeof(ans));
memset(dep,0,sizeof(dep));
}
int find(int x){//路径压缩
if(pre[x]!=x)
x=find(pre[x]);
return x;
}
void build(int x,int y){//并查集建树
int a=find(x);
int b=find(y);
if(a!=b)
pre[a]=b;
}
int main(){
while(cin>>n>>t){
init();
for(int i=0;i<t;i++){
int x,y;
cin>>x>>y;
dep[x]++;//统计分支
dep[y]++;
build(x,y);
}
int sum=0;//统计笔画参数
for(int i=1;i<=n;i++)
if(deg[i]%2){//奇点数
ans[find(i)]++;// 累加至所指 根
sum++;//统计
}
sum/=2;//上文提到的性质
for(int i=1;i<=n;i++)
if(find(i)==i){//根未统计
if(ans[i]==0&&dep[i]!=0])
//欧拉回路并且不为 一个单独的点(题目中不统计)
sum++;
}
cout<<sum<<endl;
}
return 0;
}