Pytorch --- nn.Sequential()模块

本文介绍PyTorch中nn.Sequential()的作用及使用方法,并通过AlexNet实例展示了如何将其用于网络层的组合。nn.Sequential()可以将多个网络层如Conv2d()、ReLU()、Maxpool2d()等串联起来,简化模型定义。

简而言之,nn.Sequential()可以将一系列的操作打包,这些操作可以包括Conv2d()、ReLU()、Maxpool2d()等,打包后方便调用吧,就相当于是一个黑箱,forward()时调用这个黑箱就行了。

节选AlexNet代码的一部分来理解sequential:

class AlexNet(nn.Module):
    def __init__(self, num_classes=1000, init_weights=False):
        super(AlexNet, self).__init__()
        
        self.features = nn.Sequential(
            nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2), 
            nn.Conv2d(48, 128, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(128, 192, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 192, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
        ......
        
    def forward(self, x):
        x = self.features(x)
        ......
        return x

__init__中 self.features = nn.Sequential(…)

在forward()中只需要使用self.features(x)就可

在使用 PyTorch 实现 UNet 模型时,用户可能会遇到 `ModuleNotFoundError: No module named 'unet_parts'` 的错误提示。这一问题通常与模块路径或文件结构配置不当有关。 ### 原因分析 1. **模块未正确导入**:`unet_parts` 通常是 UNet 实现中包含模型组件(如编码器、解码器块)的模块文件。如果该文件未正确放置在项目目录中,或文件名不匹配,Python 无法找到对应的模块。 2. **工作目录问题**:运行脚本时的当前工作目录可能未包含 `unet_parts.py` 文件所在的路径,导致 Python 无法识别模块。 3. **缺少必要的文件**:用户可能未正确下载或创建 `unet_parts.py` 文件,导致模块缺失。 ### 解决方案 1. **检查文件结构**:确保项目目录中包含 `unet_parts.py` 文件,并且文件名与导入语句中的模块名完全一致。例如,如果代码中写入 `from unet_parts import Down, Up`,则需要确认存在 `unet_parts.py` 文件,并且文件中包含 `Down` 和 `Up` 类或函数。 2. **调整模块路径**: - 将 `unet_parts.py` 文件放置在当前工作目录中。 - 或者,将 `unet_parts.py` 所在目录添加到 Python模块搜索路径中。例如: ```python import sys import os sys.path.append(os.path.abspath('path_to_unet_parts_directory')) ``` 3. **验证模块内容**:确保 `unet_parts.py` 文件中定义了所需的类或函数。例如,一个典型的 `unet_parts.py` 文件可能包含以下代码: ```python import torch import torch.nn as nn class DoubleConv(nn.Module): def __init__(self, in_channels, out_channels): super(DoubleConv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, 3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): return self.conv(x) class Down(nn.Module): def __init__(self, in_channels, out_channels): super(Down, self).__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_channels, out_channels) ) def forward(self, x): return self.maxpool_conv(x) class Up(nn.Module): def __init__(self, in_channels, out_channels, bilinear=True): super(Up, self).__init__() if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) else: self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = nn.functional.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) x = torch.cat([x2, x1], dim=1) return self.conv(x) ``` 4. **安装依赖库**:确保所有依赖库已正确安装,例如 `torch` 和 `torchvision`。 ### 示例脚本 以下是一个简单的 UNet 模型训练脚本示例,展示了如何正确导入 `unet_parts` 模块: ```python import torch import torch.nn as nn import torch.optim as optim from unet_parts import UNet # 定义简单的UNet模型 class UNetModel(nn.Module): def __init__(self, n_channels, n_classes): super(UNetModel, self).__init__() self.unet = UNet(n_channels, n_classes) def forward(self, x): return self.unet(x) # 初始化模型、损失函数和优化器 model = UNetModel(n_channels=3, n_classes=10) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 示例输入 inputs = torch.randn(1, 3, 572, 572) targets = torch.randint(0, 10, (1, 572, 572)) # 前向传播 outputs = model(inputs) loss = criterion(outputs, targets) # 反向传播和优化 loss.backward() optimizer.step() ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值