目标探测与识别
々云逸
这个作者很懒,什么都没留下…
展开
-
【显著性检测】Matlab实现显著性检测SR算法
目录简介代码运行结果简介从信息论的角度来看,有效编码假说将图像信息H(Image) 分为两部分:H(Image)=H(Innovation)+H(Prior Knowledge)H(Innovation)表示突出的部分,H(Prior Knowledge)则表示冗余的信息。显著性检测的SR方法即谱残差法,是通过去除图像冗余信息来获得图像与众不 同的部分,即显著目标。计算公式如下:算法步骤为:对图像进行傅立叶变换将局部平滑后的对数幅度谱作为冗余部分原对数幅度谱减去平滑后的对数幅度谱将剩原创 2020-07-11 12:25:12 · 7071 阅读 · 8 评论 -
【显著性检测】Matlab实现Itti显著性检测
目录理论知识代码步骤读取图像得到金字塔图像提取底层特征计算显著图显著图综合运行结果展示理论知识显著性检测 是指按照人类的视觉注意机制,判断出图像中的显著区域,并为该区域分配较高的显著值,通常认为显著区域更有可能包含目标,利用显著性检测的方法能够快速在图像中找到可能的目标区域,可以减少计算量。显著性检测主要是提取底层视觉特征来计算局部区域的差异性。Itti模型是一种经典的自底向上基于底层显著特征计算的显著性检测模型,其实现过程大致分为高斯滤波、计算底层空间特征图和计算显著性图,结构如下图所示篇幅原原创 2020-07-11 00:54:22 · 6878 阅读 · 16 评论 -
Haar特征计算的一些见解
最近在目标探测与识别课上学了积分图和Haar特征的相关知识。刚学的时候,对Haar特征的数量计算有一些疑惑。后来查阅相关资料之后,恍然大悟了。下面分享一下我的见解:积分图这个就不用多说了。积分图尺寸与原图像尺寸一致,积分图上任意一点(x,y)的值就是原图像上从左上角到对应(x,y)位置所围成的矩形区域所有像素的灰度值之和。由积分图计算Haar特征使用积分图计算Haar特征,主要是为了加快计...原创 2020-03-27 22:00:10 · 682 阅读 · 0 评论