机器学习笔记—1(李宏毅版)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

机器学习相当于寻找一个函数,即Model,这个函数可以通过一个“输入”获得一个“输出”,比如输入声音获得文字,输入图片输出分类,输入过去的PM2.5值输出明天的PM2.5值,f(x)=bias+weightx
在所有找到的函数中,预期值与实际值相差最小的那个函数,就是所需要的那个函数,对于不同的weight和bias,有不同的Loss(w,b),用于判定这个函数有多好,使得Loss(w,b)最小的那组(w,b)
通过训练资料计算Loss,e1=(y1-y(hat)1)^2,如何算出最小的Loss?通过Loss对weight和bias进行偏微分,就能找出极小值点
Loss(w,b)可以自行定义
学习速率,每次向Loss减小方向移动的距离
实际上,在Linear Model中,weight和feature的数量到达极限后,继续增加feature数量并不一定会让结果更好
定义函数function–>定义Loss(w,b)–>找出最好的function
可以使用分段函数来组成最优的结果函数
2.
sigmoid function 和 hard sigmoid function 通过调整参数weight和bias用来组成各式各样的 function,w控制斜率,b控制左右位置,c控制曲线高度,B(在x=0处的y的值)+(多个相加)c
sigmoid(b+wx),用多个这样的function相加获得复杂的function
即 y=bi+(多个相加)ci
sigmoid(bi+wij*xj) ,可以化为矩阵相乘
ReLU,Sigmoid,Activation Function,Neuron,Neural Network --> Deep Learning


前言

机器学习为人工智能的基础学科。
课程网址:http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

B站视频地址:https://www.bilibili.com/video/BV1JE411g7XF?from=search&seid=18330864429491522852

案例提供的是在Colab上运行的,不能使用的同学可以直接使用其他python编程工具即可。


以下是本篇文章正文内容

一、Regression

根据输入的信息,获得相对应的输出,即得到一个函数。

二、步骤

1.寻找Model(Function Set)

model可以理解为一组function的集合,比如 Y=Ai*Xi+Bi 这样一组一次方程组的集合

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import  ssl
ssl._create_default_https_context = ssl._create_unverified_context

2.读入数据

代码如下(示例):

data = pd.read_csv(
    'https://labfile.oss.aliyuncs.com/courses/1283/adult.data.csv')
print(data.head())

该处使用的url网络请求的数据。


总结

提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值