中国剩余定理

假若有方程组x=a[i](mod mi) i=0,1,2,...   求出x

另M为所有mi的乘积,wi=M/mi,此时,wi是除了mi之外所有m0..mi-1,..mi+1,..mn的乘积,也就是他们的公倍数。

另gcd(wi,mi)=1,求出ei=wi*pi.

此时的ei是除mi余1的数,所以最后要乘a[i].

把所有这样的mi加起来,就可以得到解。

如:

一个数除3余2,除5余3,求这个数。

x=2(mod 3)

x=3(mod 5)

w1=3, m1=5 gcd(w1,m1)=1 求得 e1=3*2=6

6*3=18

w2=5,m2=3 gcd(w2,m2)=1,求得e1=5*2=10

10*2=20

(18+20)%(3*5)=8,所以该数为8

ll china(int n,int *a,int *m){
	ll M=1,d,y,x=0;
	for(int i=0;i<n;i++) 
	M*=m[i];
	for(int i=0;i<n;i++){
		ll w=M/m[i];
		gcd(m[i],w,d,x,y);
		x=(x+y*a[i]*w)%M;
	}
	return (x+M)%M;
}

 

发布了60 篇原创文章 · 获赞 62 · 访问量 1303
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览