使用Preseq评估文库复杂度

Preseq是一款用于评估二代测序文库复杂度的工具,通过随机抽样计算不同数据量下的复杂度,并绘制饱和度曲线。当曲线趋于平缓时,表明测序量已足够,反之则需要更多数据。该工具还提供了R包支持和可视化功能,帮助确定是否需要增加测序深度。
摘要由CSDN通过智能技术生成

欢迎关注”生信修炼手册”!

评估文库复杂度有不同的算法,除了picard外,还有其他工具可以用,Preseq就是其中最常用的一款工具,文章发表在nature methods上,对应的链接如下

https://www.nature.com/articles/nmeth.2375

Preseq是一款通用的评估二代测序文库复杂度的方法,官网如下

http://smithlabresearch.org/software/preseq/challenge/

该软件还有对应的R包版本preseqR, 链接如下

https://cran.r-project.org/web/packages/preseqR/index.html

通过对序列进行随机抽样,计算不同抽样数据量下的文库复杂度,然后绘制文库复杂度曲线,以此来评估当前测序量是否满足复杂度的需求,是否需要加测数据量,其用法如下

# 第一步,对bam文件排序
samtools sort input.bam -o input.sorted.bam
# 第二步,运行preseq
preseq lc_extrap \
-s 10000 \
-o preseq.output.txt \
-B \
-P \
input.sorted.bam

-s指定抽样的reads数目,-o指定输出结果文,-B表示输入文件为bam文件,-P表示输入文件为双端测序,输出文件内容示意如下

-s参数的值为步长,计算每次抽样对应的unique fragment数目,以及对应的95%置信区间。对该结果进行可视化,代码如下

输出的图片如下所示

上图实际上是一种饱和度曲线,曲线末端斜率上升越趋近于平缓,说明再增加测序量新发现的fragment也不会多很多,当前测序量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值