论文阅读——EarthPT

EarthPT是一个7亿参数的解码Transformer模型,专为地球观测设计,通过自回归自监督学习进行训练。它能准确预测遥感图像的表面反射率,尤其适用于多光谱时间序列预测任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

EarthPT: a time series foundation model for Earth Observation

一个Earth Observation (EO)预训练的Transformer。EarthPT是一个7亿参数解码Transformer基础模型,以自回归自监督方式进行训练,并专门针对EO用例进行开发。我们证明了EarthPT是一个有效的预测器,可以准确地预测未来400- 2300 nm范围内的像素级表面反射率。

以多光谱时间序列的形式在Earth Observation (EO)数据的14 B令牌上训练Chinchilla最优700 M参数解码Transformer模型。

以通常的自回归方式训练EarthPT,通过重复预测给定时间序列中的下一个观测值。

模型是为了预测一些遥感图像指数之类的:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值