EDM (Euler Discretization with Momentum): EDM代表了欧拉离散化并带有动量的方法,它通常是对连续时间扩散过程进行数值积分的一种变体,通过引入动量项来改进收敛性和稳定性。
在 EDMSampler 中,主要原理可以概括为以下几点:
- 扩散过程:
- 在训练阶段,扩散模型学习如何将带有不同水平噪声的数据逐渐还原至无噪声的状态。
- 这个过程可以视为一系列连续的概率转换,每个步骤对应一个噪声水平(即 sigma)。
- Euler方法:
- 该类中的 sampler_step 方法使用了Euler方法进行离散化处理,这是一种数值积分技术,用于近似解决微分方程。
- 对于扩散模型来说,这个离散化的一步就是根据当前噪声水平和下一步的目标噪声水平,计算并应用相应的更新到采样状态上。
- 动态调整:
- EDMSampler 包含了一些自定义参数如 s_churn,