stable diffusion采样详解

本文介绍了StableDiffusion模型的采样过程,涉及逆向模拟扩散去噪、微分方程求解,如Euler方法的应用,以及不同采样策略如Ancestral、Karras系列、DPM和最新发展的UniPC。这些方法通过控制噪声和迭代过程生成高质量图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

采样:模型会在Latent Space中生成一个完全随机的图像,然后噪声预测器会从图像中减去预测的噪声。随着这个步骤的不断重复,最终得到一个清晰的图像。

Stable Diffusion在每个步骤中都会生成一张新的采样后的图像,整个去噪的过程,即为采样,使用的采样手段,即为采样器或称为采样方法

 

逆向采样过程:

在生成阶段,目标是从纯噪声状态开始,通过一系列步骤反向模拟扩散过程以去除噪声并生成清晰图像。这就是采样的核心环节。为了实现这一点,模型需要解一个与扩散过程相反的微分方程或随机过程,以便逐次减少噪声并重构出接近原始数据的概率分布中的样本。

为什么要求解微分方程?(微分方程在这里起着描述数据退化和复原过程的作用。对于Stable Diffusion模型,特别是基于常微分方程(ODE)或随机微分方程(SDE)的变种,模型需要能够预测在任意噪声水平下如何“去噪”给定的输入图像。通过求解这些微分方程,模型能够在每一步预测最优的更新量,从而使得当前的中间态更接近于真实数据而不是噪声。这种迭代去噪的方式允许模型控制生成过程,并最终得到高质量的输出图像。)

举个栗子,最简单的Euler采样

import numpy as np

# 定义目标函数(假设我们有一个线性ODE dy/dt = f(t, y))
def f(t, y):
    # 这里以dy/dt = -y + x + 1为例
    # 实际应用中请替换为你的函数f
    x = t * 2  # 假设x与t有关的一个示例项
    return -y + x + 1

def euler(f, t0, y0, h, N):
    """
    Euler方法实现
    参数&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值