记录:VGG16的环境配置、运行结果

一、环境配置(unbantu20)

Anaconda:

1、清华镜像选择Anaconda3-2020.11-Linux-x86_64.sh进行下载。
2、进入下载文件所在目录,再执行bash Anaconda3-2020.11-Linux-x86_64.sh进行安装。
3、将Anaconda添加到用户环境变量中,使用vim编辑器打开 .bashrc 环境变量文件:vim ~/.bashrc,文4、件末尾插入export PATH=“/home/用户名/anaconda3/bin:$PATH”,保存。

Pytorch:

1、进入 Pytorch 官网,下滑找到配置列表,按照图示参数进行选择下载,先复制命令。
2、创建虚拟环境:conda create -n pytorch1110 python=3.6
3、激活虚拟环境:conda activate pytorch1110
4、输入下载命令

Pycharm:

1、在软件中心安装
2、新建项目,选择创建好的pytorch1110环境

二、VGG16:

在这里插入图片描述

代码:

import torch
import torch.nn as nn
from torchvision import transforms, datasets
from torch.utils.data.dataloader import DataLoader
from torch import optim
from tqdm import tqdm
from torch.autograd import Variable


batch_size = 128        # 批的大小
learning_rate = 1e-3    # 学习率
epochs = 5      # 遍历训练集的次数

# 设置transforms
transform = transforms.Compose([
    transforms.ToTensor(),  # numpy -> Tensor
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 归一化
])
# 下载训练集
train_set = datasets.CIFAR10(root='/home/orange/datas/cifar-10-python', train=True, download=True, transform=transform)
# 下载测试集
test_set = datasets.CIFAR10(root='/home/orange/datas/cifar-10-python', train=False, download=True, transform=transform)
# 批量读取数据
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# 定义网络模型
class VGG16(nn.Module):
    def __init__(self, num_classes=10):
        super(VGG16, self).__init__()
        self.features = nn.Sequential(

            # ---block1:2次卷积、一次池化---
            # 1 224*224*3 -> 224*224*64
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            # 将数据拉回到均值为0,方差为1的正太分布上
            # 一方面使得数据分布一致,另一方面避免梯度消失。
            nn.BatchNorm2d(64),
            # inplace-选择是否进行覆盖运算
            # 对从上层网络Conv2d中传递下来的tensor直接进行修改,
            # 这样能够节省运算内存,不用多存储其他变量
            nn.ReLU(True),
            # 2 224*224*64 -> 224*224*64
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            # 224*224*64 -> 112*112*64
            nn.MaxPool2d(kernel_size=2, stride=2),

            # ---block2:2次卷积、一次池化---
            # 3 112*112*64 -> 112*112*128
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(True),
            # 4 112*112*128 -> 112*112*128
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(True),
            # 112*112*128 -> 56*56*128
            nn.MaxPool2d(kernel_size=2, stride=2),

            # ---block3:3次卷积、一次池化---
            # 5 56*56*128 -> 56*56*256
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(True),
            # 6 56*56*256 -> 56*56*256
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(True),
            # 7 56*56*256 -> 56*56*256
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(True),
            # 56*56*256 -> 28*28*256
            nn.MaxPool2d(kernel_size=2, stride=2),

            # ---block4:3次卷积、一次池化---
            # 8 28*28*256 -> 28*28*512
            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            # 9 28*28*512 -> 28*28*512
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            # 10 28*28*512 -> 28*28*512
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            # 28*28*512 -> 14*14*512
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            # ---block5:3次卷积、一次池化---
            # 11 14*14*512 -> 14*14*512
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            # 12 14*14*512 -> 14*14*512
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            # 13 14*14*512 -> 14*14*512
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            # 14*14*512 -> 7*7*512
            nn.MaxPool2d(kernel_size=2, stride=2),
			
            nn.AvgPool2d(kernel_size=1, stride=1),
        )
        # 三次全连接
        self.classifier = nn.Sequential(
            # 14 第一次
            nn.Linear(512, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            # 15 第二次
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            # 16 第三次
            nn.Linear(4096, num_classes),
        )

    def forward(self, x):
        out = self.features(x)
        #        print(out.shape)
        out = out.view(out.size(0), -1)
        #        print(out.shape)
        out = self.classifier(out)
        #        print(out.shape)
        return out


# 创建model实例对象,并检测是否支持使用GPU
model = VGG16()
use_gpu = torch.cuda.is_available()  # 判断是否有GPU加速
if use_gpu:
    model = model.cuda()

# 定义loss和optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

# 训练模型
for epoch in range(epochs):
    print('*' * 25, 'epoch {}'.format(epoch + 1), '*' * 25)  # .format为输出格式,format括号里的即为左边花括号的输出
    running_loss = 0.0
    running_acc = 0.0
    for i, data in tqdm(enumerate(train_loader, 1)):
        img, label = data
        # cuda
        if use_gpu:
            img = img.cuda()
            label = label.cuda()
        img = Variable(img)
        label = Variable(label)
        # 向前传播
        out = model(img)
        loss = criterion(out, label)
        running_loss += loss.item() * label.size(0)
        _, pred = torch.max(out, 1)  # 预测最大值所在的位置标签
        num_correct = (pred == label).sum()
        accuracy = (pred == label).float().mean()
        running_acc += num_correct.item()
        # 向后传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print('Finish {} epoch, Loss: {:.6f}, Acc: {:.6f}'.format(epoch + 1, running_loss / (len(train_set)),
                                                              running_acc / (len(train_set))))

    model.eval()  # 模型评估
    eval_loss = 0
    eval_acc = 0
    for data in test_loader:  # 测试模型
        img, label = data
        if use_gpu:
            img = Variable(img, volatile=True).cuda()
            label = Variable(label, volatile=True).cuda()
        else:
            img = Variable(img, volatile=True)
            label = Variable(label, volatile=True)
        out = model(img)
        loss = criterion(out, label)
        eval_loss += loss.item() * label.size(0)
        _, pred = torch.max(out, 1)
        num_correct = (pred == label).sum()
        eval_acc += num_correct.item()
    print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(test_set)), eval_acc / (len(test_set))))
    print()


# 保存模型
torch.save(model.state_dict(), '/home/orange/PycharmProjects/models/VGG16')

结果:
在这里插入图片描述

在这里插入图片描述

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
OpenCV 是一种广泛使用的计算机视觉库,在处理图像和视频等视觉数据方面具有很高的性能和可靠性。其中,xfeatures2d 模块是 OpenCV 的一个子模块,它提供了一些高级的特征提取和描述算法。 然而,在编写应用程序时,有时会遇到如题所示的问题:OpenCV 无法解析的外部符号 xfeatures2d::vgg。这是因为该模块中的某些函数或类没有正确链接到应用程序中,导致编译器无法识别该符号。 为解决此问题,可以尝试如下几种方法: 1. 检查 OpenCV 版本是否正确。特别是,需要确保使用的 OpenCV 版本中包含了 xfeatures2d 模块。如果使用的是较老的版本,可能会出现无法识别符号的问题。 2. 检查编译选项是否正确。在编译应用程序时,需要将 OpenCV 库的路径和头文件路径正确地指定到编译器中。如果有误,建议修改编译选项。 3. 使用合适的命名空间。有时,可能会出现类或函数的名称与其他库或命名空间中的名称冲突,导致编译器无法确定应该使用哪一个。建议使用完整的命名空间或为该符号添加所需的命名空间。 4. 检查是否正确导入库文件。在使用 OpenCV 时,需要链接相应的库文件。如果库文件没有正确导入,也会出现无法识别符号的错误。 在修复上述问题后,应用程序应能够正确编译和执行。需要注意的是,如果出现其他符号无法识别的问题,应使用类似的方法进行解决。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值