- 博客(27)
- 收藏
- 关注
原创 Sora理解
在文字生成领域,GPT-2无疑是一个分水岭。2018年GPT-2的推出,标志着能够生成连贯、语法正确的文本段落的新时代。虽然性能一般,但它为后续的模型发展奠定了基础。四年后,GPT-4已经能够执行串联思维这种复杂任务。而今天,Sora已经也意味着这样的时刻。未完待更。
2024-03-01 11:07:26 310
原创 from googletrans import Translator
【代码】from googletrans import Translator。
2024-01-29 17:11:18 300
原创 Pytorch-类的继承:class Net(torch.nn.Module)
继承是面向对象编程中的一个重要概念,它允许我们创建一个新类,并从一个或多个现有类中继承属性和方法。
2024-01-17 10:27:11 969
原创 Github下载代码攻略
③ 多人协作:Git clone可以方便地实现多人协作开发,每个开发者可以在本地独立开发,然后通过Git的推送和拉取功能将代码同步到远程仓库,实现团队协作。GitHub是一个面向开源及私有软件项目的托管平台,因为只支持Git作为唯一的版本库格式进行托管,故名GitHub。① 方便快捷:使用Git clone可以快速将远程仓库的代码复制到本地,无需手动下载和复制文件。:Git clone可以保护代码的安全性,因为只有具有相应权限的人才能够克隆远程仓库的代码。:Git clone会将整个仓库的历史记录和。
2024-01-15 17:28:58 1307 1
原创 模型剪枝代码
可以在单层、多层或整个模型中进行。分为结构化剪枝和非机构化剪枝。指在模型中直接剪掉一些不重要的参数,从而减少模型的。这种剪枝方式不考虑模型的结构,只关注参数的重要性。模型剪枝是指减少神经网络中的。
2024-01-14 20:16:20 409 1
原创 深度学习模型量化
动态量化是指在模型推理时对模型进行量化。动态量化可以在不牺牲模型精度的情况下减少模型的存储空间和计算量。动态量化通常需要对模型进行微调以达到最佳性能。静态量化是指在训练过程中对模型进行量化,然后将量化后的模型保存下来。静态量化可以减少模型的存储空间和计算量,但可能会对模型的精度产生一定的影响。模型量化是一种将深度学习模型压缩为更小、更快速、更节能的过程。它可以通过减少模型的存储空间和计算量来提高模型的效率和性能。模型量化通常分为动态量化和静态量化两种方式。
2023-11-16 10:38:25 161 1
原创 PyTorch图像预处理包torchvision.transforms
【代码】PyTorch图像预处理包torchvision.transforms。
2023-08-25 17:59:40 142 1
原创 pytorch中torch.randn(batch_size,channels,width,height)理解
函数是PyTorch中用于生成服从(均值为0,方差为1)的随机数的函数1)用来创建指定大小的张量;2)张量中的元素是从标准正态分布中采样得到的随机数。参数说明::表示生成的随机数张量的大小。可以是一个整数,表示生成一个具有指定大小的1维张量,也可以是一个整数元组,表示生成一个具有指定大小的多维张量。:可选参数,用于指定输出张量。:可选参数,用于指定输出张量的数据类型,默认为None,表示使用默认的数据类型。:可选参数,用于指定输出张量的布局,默认为torch.strided。
2023-08-11 12:33:42 965 1
原创 CUDA扫盲篇
2006年,NVIDIA公司发布了CUDA,CUDA是建立在NVIDIA的CPUs上的一个通用并行计算平台和编程模型,基于CUDA编程可以利用GPUs的并行计算引擎来更加高效地解决比较复杂的计算难题。近年来,GPU最成功的一个应用就是深度学习领域,基于GPU的并行计算已经成为训练深度学习模型的标配。目前,最新的CUDA版本为CUDA 12.2。
2023-08-02 20:56:22 185
原创 SAM(Segment Anything)论文理解
我们介绍了 SAM 项目:一个基于新的任务、模型和数据集的语义分割。提出了高效的数据收集循环机制,建立了迄今为止最大的语义分割数据集:在1100万张经过授权的图片中标注了超过10亿个掩码图。因为设计和训练的 SAM 模型有提示/引导交互,因此它可以无监督学习迁移到任意新的视觉任务中。我们评估了它在许多任务中的能力,发现它的无监督学习性能很棒,甚至可与之前的完全监督结果相媲美。我们在上发布了模型(SAM)和包含10亿个掩码图与SA-1B的数据集,以促进对计算机视觉基础模型的研究。
2023-05-26 17:56:00 769 1
原创 pytorch逐行搭建CNN系列(四)ZFnet
通常来说,在卷积操作中我们会将中间特征层(feature)的激活值持续传递至下一层,直到全连接层映射到样本标记空间(输出结果/类别),但是在反卷积网络中,我们将中间特征层(feature)的激活值映射到输入图像的像素空间,通过对比显示,得到输入图像中的某些像素的模式特征能够使某一个中间层的特征图被激活。
2023-03-23 18:31:21 163
原创 卷积神经网络CNN浅理解(持续更新)
权值共享其实就是对图像用同样的卷积核进行卷积操作,也就意味着第一个隐藏层的所有神经元所能检测到处于图像不同位置的完全相同的特征。其主要的能力就能检测到不同位置的同一类型特征,也就是卷积网络能很好的适应图像的小范围的平移性,即有较好的平移不变性(比如将输入图像的猫的位置移动之后,同样能够检测到猫的图像)1)局部感受野:由于像素的空间关系具有局部性,所以每个神经元不需要同时对全部的像素进行特征提取,只需感受局部特征即可,最后在更高层将这些局部特征综合起来就可以得到整图的信息,这样可以减少连接的数目。
2023-03-23 11:20:34 94
原创 pytorch逐行搭建CNN系列(三)ResNet50
在这里插入图片描述](https://img-blog.csdnimg.cn/cda0a32ed5ec48d1a1b58a8377783483.png。提出Batch Normalization 加速训练(丢弃dropout):将一批数据的feature map转化为满足均值=0,方差=1的分布。提出了残差网络块(Residual):人为地让神经网络某些层跳过下一层神经元的连接,隔层相连,弱化每层之间的强联系。利用summary()函数打印网络结构和参数。使用了一种shortcut的跳跃连接方式。
2023-03-22 17:35:02 1707
原创 pytorch逐行搭建CNN系列(二)VGG16
[注]上图是从百度图片中截取的,感谢这位作者!———————————————————————————————————————————接下来对每一层进行梳理:————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
2023-03-21 11:51:08 618
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人