常用电影推荐方法简述

在这里插入图片描述

根据评分进行排序的电影推荐:

在这里插入图片描述

基于内容的电影推荐:

在这里插入图片描述

基于协同推荐的电影推荐:

(Collaborative Filtering,简称CF)
在这里插入图片描述
第一步:建立用户电影矩阵模型: 协同过滤算法的输入数据通常表示为一个m*n的用户评价矩阵Matrix,m是用户数,n是电影数,Matrix[ij]表示第i个用户对第j个电影的评价
第二步:发现兴趣相似的用户: 通过计算目标用户与其他用户之间的相似度,得到与目标用户最近的邻居集
第三步:产生推荐项目: 在矩阵中找到与目标用户最相似的K个用户,电影用集合S(u,K)表示,将S中用户喜欢的电影全部提取出来
在这里插入图片描述

基于规则的推荐:

这类算法常见的比如基于最多用户点击,最多用户浏览等,属于大众型的推荐方法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

考古学家lx(李玺)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值