完整工程代码(附详细注释):
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <Windows.h>
using namespace cv;
using namespace std;
static void help()
{
printf("\nThis program demonstrated the use of the discrete Fourier transform (dft)\n"
"The dft of an image is taken and it's power spectrum is displayed.\n"
"Usage:\n"
"./dft [image_name -- default lena.jpg]\n");
}
int main()
{
SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE),FOREGROUND_INTENSITY | FOREGROUND_GREEN);
help();
Mat src = imread("lena.jpg");
if(src.empty())
{
return -1;
}
Mat srcGray;
cvtColor(src,srcGray,CV_RGB2GRAY); //灰度图像做傅里叶变换
int m = getOptimalDFTSize(srcGray.rows); //2,3,5的倍数有更高效率的傅里叶变换
int n = getOptimalDFTSize(srcGray.cols);
Mat padded;
//把灰度图像放在左上角,在右边和下边扩展图像,扩展部分填充为0;
copyMakeBorder(srcGray, padded, 0, m - srcGray.rows,0, n - srcGray.cols, BORDER_CONSTANT, Scalar::all(0));
cout<<padded.size()<<endl;
//这里是获取了两个Mat,一个用于存放dft变换的实部,一个用于存放虚部,初始的时候,实部就是图像本身,虚部全为零
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(),CV_32F)};
Mat complexImg;
//将几个单通道的mat融合成一个多通道的mat,这里融合的complexImg既有实部又有虚部
merge(planes,2,complexImg);
//对上边合成的mat进行傅里叶变换,支持原地操作,傅里叶变换结果为复数.通道1存的是实部,通道二存的是虚部
dft(complexImg,complexImg);
//把变换后的结果分割到两个mat,一个实部,一个虚部,方便后续操作
split(complexImg,planes);
//这一部分是为了计算dft变换后的幅值,傅立叶变换的幅度值范围大到不适合在屏幕上显示。高值在屏幕上显示为白点,而低值为黑点,高低值的变化无法有效分辨。为了在屏幕上凸显出高低变化的连续性,我们可以用对数尺度来替换线性尺度,以便于显示幅值
//计算公式如下: => log(1 + sqrt(Re(DFT(I))^2 +Im(DFT(I))^2))
magnitude(planes[0],planes[1],planes[0]); //计算幅值
Mat mag = planes[0];
mag += Scalar::all(1);
log(mag, mag);
//crop the spectrum, if it has an odd number of rows or columns
//修剪频谱,如果图像的行或者列是奇数的话,那其频谱是不对称的,因此要修剪
//这里为什么要用 &-2这个操作,我会在代码后面的 注2 说明
mag = mag(Rect(0, 0, mag.cols & -2, mag.rows & -2));
Mat _magI = mag.clone();
//这一步的目的仍然是为了显示,但是幅度值仍然超过可显示范围[0,1],我们使用 normalize() 函数将幅度归一化到可显示范围。
normalize(_magI, _magI, 0, 1, CV_MINMAX);
imshow("before rearrange", _magI);
//rearrange the quadrants of Fourier image
//so that the origin is at the image center
//重新分配象限,使(0,0)移动到图像中心,
//在《数字图像处理》中,傅里叶变换之前要对源图像乘以(-1)^(x+y)进行中心化。
//这是是对傅里叶变换结果进行中心化
int cx = mag.cols/2;
int cy = mag.rows/2;
Mat tmp;
Mat q0(mag, Rect(0, 0, cx, cy)); //Top-Left - Create a ROI per quadrant
Mat q1(mag, Rect(cx, 0, cx, cy)); //Top-Right
Mat q2(mag, Rect(0, cy, cx, cy)); //Bottom-Left
Mat q3(mag, Rect(cx, cy, cx, cy)); //Bottom-Right
//swap quadrants(Top-Left with Bottom-Right)
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
// swap quadrant (Top-Rightwith Bottom-Left)
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
normalize(mag,mag, 0, 1, CV_MINMAX);
imshow("Input Image", srcGray);
imshow("spectrum magnitude",mag);
//傅里叶的逆变换
Mat ifft;
idft(complexImg,ifft,DFT_REAL_OUTPUT);
normalize(ifft,ifft,0,1,CV_MINMAX);
imshow("inverse fft",ifft);
waitKey();
return 0;
}
备注2:
我们知道x&-2代表x与-2按位相与,而-2的二进制形式是2的二进制取反加一的结果(这是补码的问题)。2 的二进制结果是(假设 8位表示,实际整型是32位,但是描述方式是一样的,为便于描述,用8位表示)0000 0010,则-2的二进制形式为:1111 1110,x与-2按位相与后,不管x是奇数还是偶数,最后x都会变成一个偶数。
备注3:
我相信很多人,包括我自己都会很疑惑,为什么要对傅里叶变换的结果进行坐标转换,才能看到那种中间亮,周围暗的频率图。我也研究了很久,后来发现,这是因为对于正常的傅里叶变换,其变换的结果都是在0 ~ 2*pi之间的,如果将其转换为-pi ~ pi之间,实质上是没有变化的,但是为了方便人观察,才将结果转换到-pi~pi中。实际上如果拿四张一模一样的没有经过坐标变换的图拼在一起,会发现拼接处的图形模样与坐标变换后是一样的。
解释如下:
imshow 函数缩放图像,取决于图像的深度:
- 如果载入的图像是8位无符号类型(8-bit unsigned),就显示图像本来的样子。
- 如果图像是16位无符号类型(16-bit unsigned)或32位整型(32-bit integer),便用像素值除以256。也就是说,值的范围是[0,255 x 256]映射到[0,255]。
- 如果图像是32位浮点型(32-bit floating-point),像素值便要乘以255。也就是说,该值的范围是[0,1]映射到[0,255]
附(作用):
- 1.图像增强与图像去噪
绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘; - 2.图像分割之边缘检测
提取图像高频分量 - 3.图像特征提取:
形状特征:傅里叶描述
纹理特征:直接通过傅里叶系数来计算纹理特征
其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性 - 4.图像压缩
可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换;
作者:青雲-吾道乐途
来源:CSDN
原文:https://blog.csdn.net/qq_37059483/article/details/77979910
版权声明:本文为博主原创文章,转载请附上博文链接!