SQL:连续登陆问题

在写sql语句的人经常会遇到这么一种情况:求连续登陆的这一批用户。遇到这样的问题,可能会比较棘手,现在跟着我动手写一遍,看下如何求连续登陆的问题。

需求是:求出连续登陆3天的这一批用户

思路: 首先通过窗口函数row number,根据user_id字段进行分区,按照login_date进行排序,窗口函数这一列起个别名为rk。接着通过sub函数将login_date减去rk,得到一个新的日期。接着对user_id和新日期进行groupby。得到的结果通过having 去筛选个数为3的id即可。

数据准备

在本地创建文件: vim test_user_login.txt

123	2021-08-02
456	2021-11-02
123	2021-08-03
123	2021-08-04
456	2021-12-09
789	2021-01-01
789	2021-04-03
789	2021-09-10
789	2021-09-11
789	2021-09-12

这里面的时间已经取到了日期,所以可以直接使用。其他格式的日期通过substr截取到日期,再进行userID和日期字段进行group by操作,这个表的数据再拿来使用。

建表

创建表:

create table test_user_login_3days(
    user_id int,
    login_date date
)
row format delimited fields terminated by '\t';

导入数据

load data locol inpath '/opt/module/datas/test_user_login.txt' into table test_user_login_3days

编写sql语句

利用开窗函数,row number( ) over()函数,对user_id进行分区,以及login_date进行排序:

select
    user_id,
    login_date,
    row_number() over (partition by user_id order by login_date) as rn
from
     test_user_login_3days;

结果:

OK
user_id	login_date	rn
123	2021-08-02	1
123	2021-08-03	2
123	2021-08-04	3
456	2021-11-02	1
456	2021-12-09	2
789	2021-01-01	1
789	2021-04-03	2
789	2021-09-10	3
789	2021-09-11	4
789	2021-09-12	5

接着再利用date_sub函数(该函数的作用是根据输入的日期减去输入的参数)。

select
    A.user_id,
    A.login_date,
   date_sub (A.login_date,A.rn)  AS inteval_days
from
(
select
    user_id,
    login_date,
    row_number() over (partition by user_id order by login_date) as rn
from
     test_user_login_3days)A;

结果:

OK
a.user_id	a.login_date	inteval_days
123	2021-08-02	2021-08-01
123	2021-08-03	2021-08-01
123	2021-08-04	2021-08-01
456	2021-11-02	2021-11-01
456	2021-12-09	2021-12-07
789	2021-01-01	2020-12-31
789	2021-04-03	2021-04-01
789	2021-09-10	2021-09-07
789	2021-09-11	2021-09-07
789	2021-09-12	2021-09-07
Time taken: 96.335 seconds, Fetched: 10 row(s)

最后再通过group by 根据user_id和interval_days进行聚合。
having 条件筛选个数=3即可。

所以最终的sql语句是:

select
    B.user_id
from
(
select
    A.user_id,
    A.login_date,
   date_sub (A.login_date,A.rn)  AS inteval_days
from
(
select
    user_id,
    login_date,
    row_number() over (partition by user_id order by login_date) as rn
from
     test_user_login_3days)A)B
group by B.user_id,B.inteval_days
having count(1) = 3;

结果:

b.user_id
123
789
### HiveSQL 连续登录问题解决方案 在处理连续登录问题时,通常需要统计用户的连续登录天数并识别出满足特定条件的数据记录。以下是基于提供的引用内容以及常见实践的一种高效解决方案。 #### 数据准备 假设已有一个名为 `test_login` 的表,其结构如下: ```sql create table if not exists test_login( user_id string, login_date string ) row format delimited fields terminated by '\t'; ``` 加载数据到该表中以便后续查询操作。 --- #### 查询逻辑设计 为了找出连续登录超过指定天数的用户及其对应的起始时间和结束时间,可以采用窗口函数配合日期差值的方法来解决问题。具体实现过程如下所示: 1. **计算每条记录相对于同用户其他记录的位置偏移量** 使用 `ROW_NUMBER()` 函数按用户分组并对登录日期升序排列生成序列号。 2. **通过日期减去位置偏移量构建辅助列** 利用 `DATE_SUB()` 将实际登录日期减去对应行号得到一个新的虚拟字段 (`diff_date`) ,对于同一段连续时间段内的所有记录来说此值应保持一致。 3. **聚合分析获取最终结果集** 基于前一步产生的新维度再次进行分组合计,筛选符合条件的结果展示给业务方查看。 下面是完整的 SQL 实现语句: ```sql WITH temp AS ( SELECT user_id, login_date, DATE_SUB(login_date, ROW_NUMBER() OVER(PARTITION BY user_id ORDER BY login_date ASC)) AS diff_date FROM test_login ) SELECT user_id, COUNT(*) AS login_times, MIN(login_date) AS start_date, MAX(login_date) AS end_date FROM temp GROUP BY user_id, diff_date HAVING COUNT(*) >= 3; ``` 以上脚本实现了对原始日志数据的有效解析,并能够准确返回那些至少存在三次及以上连续访问行为的目标群体列表[^1][^2]. 如果还需要考虑更复杂的场景比如允许一定范围内的跳跃式连接,则需进一步调整算法细节,在这里就不展开赘述了[^4]。 --- ### 示例输出效果预览 假设有如下输入样本数据: | user_id | login_date | |---------|------------| | 01 | 2021-02-28 | | 01 | 2021-03-01 | | 01 | 2021-03-02 | | 01 | 2021-03-04 | | 01 | 2021-03-05 | | 01 | 2021-03-06 | 执行上述代码片段后可得预期成果如下表格形式呈现: | user_id | login_times | start_date | end_date | |---------|-------------|------------|------------| | 01 | 3 | 2021-02-28 | 2021-03-02 | | 01 | 3 | 2021-03-04 | 2021-03-06 | 这表明用户 '01' 存在于两个独立周期里均达成过三天以上的不间断签到成就. ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦里Coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值