FastGPT + OneAPI 构建知识库

云端text-embedding模型

这个在前面的文章FastGPT私有化部署+OneAPI配置大模型中其实已经说过,大概就是部署完成OneAPI后,分别新建令牌和渠道,并完成FastGPT的配置。

新建渠道

选择模型的类型并配置对应的词向量模型即可,这里我选择的是阿里通义千问。
在这里插入图片描述
重启oneAPI

FastGPT配置

docker-compose.yml文件配置
在这里插入图片描述
修改 FastGPT 配置文件config.json

"vectorModels": [
	{
      "model": "text-embedding-v1",
      "name": "lingmouAI",
      "inputPrice": 0,
      "outputPrice": 0,
      "defaultToken": 700,
      "maxToken": 3000,
      "weight": 100
    },
	{
      "model": "text-embedding-ada-002",
      "name": "lingmouAI",
      "inputPrice": 0,
      "outputPrice": 0,
      "defaultToken": 700,
      "maxToken": 3000,
      "weight": 100
    }
  ],

重启fastGPT

docker-compose up -d

FastGPT测试知识库训练

新建知识库
在这里插入图片描述
上传文件
在这里插入图片描述
上传文件并设置训练方式和处理方式
在这里插入图片描述
上传数据,并等待训练完成
在这里插入图片描述
新建应用并测试
在这里插入图片描述
新建完成后,在应用内选择刚刚配置的知识库,就可以对话了
在这里插入图片描述

对text-embedding理解

问题记录

  1. 会出现多次请求大模型的情况,导致会有重复输出,重启后也没有解决。现在原因还没分析出来。
    如下所示:
    在这里插入图片描述
    我是在本地cpu电脑上跑的qwen:b的模型,并在FastGPT中提问测试。由于我关联了知识库,会到知识库中找到相似的内容后发给本地大模型,但是我发现参数量比较小的模型不能很好处理较多的输入,所以导致时间很长才会有输出且内容不准确。相关截图如下:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

本地text-embedding模型

模型下载

使用ollama下载m3e模型,部署完成后可使用PostMan等工具调用

ollama pull milkey/m3e:small-f16

在这里插入图片描述
OneAPI一定要使用最新的版本,不然会出现报错
在这里插入图片描述

OneAPI配置渠道信息

在这里插入图片描述
配置好后可使用postman调用
在这里插入图片描述

修改FastGPT的config.json文件

在这里插入图片描述

FastGPT上传知识库并训练

新建知识库选择本地知识库模型
在这里插入图片描述
上传知识库文件并训练
在这里插入图片描述
等待训练完成
在这里插入图片描述

FastGPT新建应用并测试

在这里插入图片描述

### 如何使用 OneAPI 部署 DeepSeek 为了在 Windows 系统上使用 OneAPI 部署 DeepSeek 并构建本地知识库问答系统,需遵循一系列特定的操作流程。首先,确保安装 Docker 和必要的依赖环境[^4]。 #### 安装 Docker 确认已正确安装并配置好 Docker 环境。这一步骤对于后续操作至关重要,因为 DeepSeek 的部署依赖于 Docker 容器技术来提供隔离性和一致性。 #### 获取 FastGPT 项目源码 通过 Git 命令获取 FastGPT 项目的最新版本: ```bash git clone https://github.com/your-repo/FastGPT.git ``` 注意:上述链接应替换为实际的 FastGPT GitHub 地址。此命令会下载整个仓库到当前目录下。 #### 准备 OneAPI 接入 完成代码克隆之后,在 FastGPT 中集成 OneAPI SDK 或者其他形式的支持包,以便能够调用 DeepSeek 模型服务。具体方法取决于所使用的编程语言以及框架支持情况。 #### 构建与启动容器 进入克隆下来的项目文件夹内执行如下指令以创建镜像并启动容器: ```dockerfile cd path/to/fastgpt/project docker build -t fastgpt-deepseek . docker run --name=fastgpt-instance -p host_port:container_port -d fastgpt-deepseek ``` 这里 `path/to/fastgpt/project` 是指代具体的路径名;而 `-p` 参数用于映射主机端口至容器内部的服务监听端口,方便外部访问 API 接口。 #### 连接 DeepSeek 模型 最后也是最关键的部分就是连接已经训练好的 DeepSeek 模型实例。通常情况下,可以通过 RESTful APIs 或 gRPC 协议来进行远程过程调用 (Remote Procedure Call),从而实现对模型预测功能的利用。如果是在同一台机器上的不同进程间通信,则可能更倾向于 Unix Domain Socket 方式提高效率降低延迟。 考虑到硬件性能的影响因素,建议选用较高规格的工作站或服务器设备运行更高版本的 DeepSeek R1 模型,这样可以获得更好的处理能力和响应速度[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值