本地部署基于LLama3知识库问答 (OLLama+Oneapi+Fastgpt)

本文详细介绍了如何使用Docker安装NVIDIAContainerToolkit,配置ChatOllama容器下载模型,以及部署one-api和fastgpt容器,涉及SQLite、MongoDB和PostgreSQL数据库的初始化和连接设置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.使用docker搭建ollama容器

1.Install the NVIDIA Container Toolkit.

Configure the repository

curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
    | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
    | sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
    | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update

2.Install the NVIDIA Container Toolkit packages

sudo apt-get install -y nvidia-container-toolkit

3.Start the container

docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

2.使用ChatOllama下载模型 以及体验模型

1.创建chatollama文件夹 然后下载docker-compose.yml
2.运行容器

docker-compose build
docker-compose up

3.首次运行需要初始化初始化SQLite数据库

docker compose exec chatollama npx prisma migrate dev

4.登录127.0.0.1:3000 访问chatOllama 配置ollama地址
在这里插入图片描述
5.下载embedding和chat模型 进行推理 以及可以插入本地数据库数据
在这里插入图片描述
在这里插入图片描述

3.Docker命令创建one-api容器(ip:3001):

sudo docker run --name oneapi -d --restart always -p 3000:3000 -e TZ=Asia/Shanghai -v /home/ubuntu/data/one-api:/data j
### 本地部署 Ollama 和 Dify 的方法 #### 部署 Ollama Ollama 是一种用于管理和运行大型语言模型 (LLM) 的开源工具。以下是其基本部署流程: 1. **安装 Ollama** 使用以下命令来安装 Ollama 工具链,适用于大多数 Linux 或 macOS 系统。对于 Windows 用户,则需通过 WSL 来完成操作[^1]。 ```bash curl https://ollama.ai/install.sh | sh ``` 2. **启动服务** 安装完成后,可以通过以下命令启动 Ollama 服务: ```bash ollama serve & ``` 此命令会在后台运行 Ollama API 服务器。 3. **下载模型** 下载所需的 LLM 模型至本地环境。例如,下载 `llama2` 模型可执行如下命令: ```bash ollama pull llama2 ``` 4. **测试模型接口** 测试已加载的模型是否正常工作,可通过 HTTP 请求调用 API 接口验证功能。例如,使用 `curl` 命令发送请求: ```bash curl -X POST http://localhost:11434/api/generate \ -H 'Content-Type: application/json' \ -d '{"model":"llama2","prompt":"Hello"}' ``` --- #### 部署 Dify 平台并与 Ollama 进行集成 Dify 是一款支持自定义对话应用的应用开发平台,能够轻松对接多种 LLM 提供商。以下是具体的部署过程: 1. **克隆项目仓库** 获取 Dify 开源项目的代码库,并切换到稳定分支版本: ```bash git clone https://github.com/dify-ai/dify.git cd dify git checkout stable ``` 2. **初始化依赖项** 初始化必要的 Python 虚拟环境以及安装所需依赖包: ```bash python3 -m venv .venv && source .venv/bin/activate pip install --upgrade pip setuptools wheel pip install -r requirements.txt ``` 3. **配置文件修改** 编辑 `.env.example` 文件中的参数以适配实际需求,并重命名为 `.env` 后保存更改。特别注意设置与 Ollama 对接的相关字段,如 API 地址等信息[^2]: ```plaintext OPENAI_API_BASE=http://localhost:11434 MODEL_NAME=llama2 ``` 4. **运行应用程序** 执行以下脚本启动 FastAPI Web 应用程序实例: ```bash uvicorn app.main:app --host 0.0.0.0 --port 8000 ``` 5. **实现外网访问(可选)** 如果希望外部网络也能连接到您的本地服务,推荐采用内网穿透技术。比如利用 cpolar 创建一条固定的公网隧道[^3]: ```bash ./cpolar tcp 8000 ``` 6. **绑定静态域名** 登录 Cpolar 控制面板,在线为其分配一个永久有效的二级子域名称作为入口地址。 --- ### 注意事项 - 在生产环境中建议启用 HTTPS 加密传输协议保护数据安全; - 根据硬件性能调整并发处理能力及相关资源限制策略;
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值