transforms.ToTensor()与transforms.Normalize()函数解析

1、transforms.ToTensor()作用

ToTensor()shape(H, W, C)nump.ndarrayimg转为shape(C, H, W)tensor,其将每一个数值归一化到[0,1],其归一化方法比较简单,直接除以255即可。具体可参见如下代码:

import torchvision.transforms as transforms
import numpy as np
from __future__ import print_function

# 定义转换方式,transforms.Compose将多个转换函数组合起来使用
transform1 = transforms.Compose([transforms.ToTensor()])  #归一化到(0,1),简单直接除以255

# 定义一个数组
d1 = [1,2,3,4,5,6]
d2 = [4,5,6,7,8,9]
d3 = [7,8,9,10,11,14]
d4 = [11,12,13,14,15,15]
d5 = [d1,d2,d3,d4]
d = np.array([d5,d5,d5],dtype=np.float32)
d_t = np.transpose(d,(1,2,0)) # 转置为类似图像的shape,(H,W,C),作为transform的输入
# 查看d的shape
print('d.shape: ',d.shape, '\n', 'd_t.shape: ', d_t.shape)
 # 输出
 d.shape: (3, 4, 6) 
 d_t.shape: (4, 6, 3)

d_t_trans = transform1(d_t) # 直接使用函数归一化

# 手动归一化,下面的两个步骤可以在源码里面找到
d_t_temp = torch.from_numpy(d_t.transpose((2,0,1)))
d_t_trans_man = d_t_temp.float().div(255)

print(d_t_trans.equal(d_t_trans_man))
 # 输出
 True

2、transforms.Normalize()作用

transforms.Compose([transforms.ToTensor()])中加入transforms.Normalize(),如下所示:transforms.Compose([transforms.ToTensor(),transforms.Normalize(std=(0.5,0.5,0.5),mean=(0.5,0.5,0.5))]),则其作用就是先将输入归一化到(0,1),再使用公式"(x-mean)/std",将每个元素分布到(-1,1)

transform2 = transforms.Compose([transforms.ToTensor(),transforms.Normalize(std=(0.5,0.5,0.5),mean=(0.5,0.5,0.5))])# 归一化到(0,1)之后,再 (x-mean)/std,归一化到(-1,1),数据中存在大于mean和小于mean

d_t_trans_2 = transform2(d_t)
d_t_temp1 = torch.from_numpy(d_t.transpose((2,0,1)))
d_t_temp2 = d_t_temp1.float().div(255)
d_t_trans_man2 = d_t_temp2.sub_(0.5).div_(0.5)
print(d_t_trans_2.equal(d_t_trans_man2))
 #输出
 True

可我看很多代码里面是这样的:
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
这一组值是怎么来的?
这一组值是从imagenet训练集中抽样算出来的。

3.参考

https://blog.csdn.net/u014484247/article/details/79997357

  • 60
    点赞
  • 219
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 13
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是天才很好

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值