torch.nn.NLLLoss()
class torch.nn.NLLLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean')
- 计算公式:loss(input, class) = -input[class]
- 公式理解:input = [-0.1187, 0.2110, 0.7463],target = [1],那么 loss = -0.2110。
- 个人理解:感觉像是把 target 转换成 one-hot 编码,然后与 input 点乘得到的结果。
nn.NLLLoss输入是一个对数概率向量和一个目标标签。NLLLoss() ,即负对数似然损失函数(Negative Log Likelihood)。
NLLLoss() 损失函数公式:
- 常用于多分类任务,NLLLoss 函数输入 input 之前,需要对 input 进行 log_softmax 处理,即将 input 转换成概率分布的形式,并且取对数,底数为 e。
- y k y_k yk表示one_hot 编码之后的数据标签。
- 损失函数运行的结果为 y k y_k yk与经过log_softmax运行的数据相乘,求平均值,在取反。
- 实际使用NLLLoss()损失函数时,传入的标签,无需进行one_hot编码。
实例1:
import torch
import torch.nn as nn
import torch.nn.functional as F
torch.manual_seed(2019)
output = torch.randn(1, 3) # 网络输出
target = torch.ones(1, dtype=torch.long).random_(3) # 真实标签
print(output)
print(target)
# 直接调用
loss = F.nll_loss(output, target)
print(loss)
# 实例化类
criterion = nn.NLLLoss()
loss = criterion(output, target)
print(loss)
"""
tensor([[-0.1187, 0.2110, 0.7463]])
tensor([1])
tensor(-0.2110)
tensor(-0.2110)
"""
实例2:
如果 input 维度为 M x N,那么 loss 默认取 M 个 loss 的平均值,reduction=‘none’ 表示显示全部 loss.
import torch
import torch.nn as nn
import torch.nn.functional as F
torch.manual_seed(2019)
output = torch.randn(2, 3) # 网络输出
target = torch.ones(2, dtype=torch.long).random_(3) # 真实标签
print(output)
print(target)
# 直接调用
loss = F.nll_loss(output, target)
print(loss)
# 实例化类
criterion = nn.NLLLoss(reduction='none')
loss = criterion(output, target)
print(loss)
"""
tensor([[-0.1187, 0.2110, 0.7463],
[-0.6136, -0.1186, 1.5565]])
tensor([2, 0])
tensor(-0.0664)
tensor([-0.7463, 0.6136])
"""
参考:https://blog.csdn.net/weixin_40476348/article/details/94562240
torch.nn.CrossEntropyLoss()
对数据进行softmax,再log,再进行NLLLoss。其与nn.NLLLoss的关系可以描述为:
softmax(x)+log(x)+nn.NLLLoss====>nn.CrossEntropyLoss
无需对输出结果进行softmax处理,使用nn.CrossEntropyLoss会自动加上Softmax层。
nn.CrossEntropy()的表达式:
import torch
import torch.nn as nn
a = torch.Tensor([[1,2,3]])
target = torch.Tensor([2]).long()
logsoftmax = nn.LogSoftmax()
ce = nn.CrossEntropyLoss()
nll = nn.NLLLoss()
# 测试CrossEntropyLoss
cel = ce(a,target)
print(cel)
# 输出:tensor(0.4076)
# 测试LogSoftmax+NLLLoss
lsm_a = logsoftmax(a)
nll_lsm_a = nll(lsm_a,target)
# 输出tensor(0.4076)
看来直接用nn.CrossEntropy和nn.LogSoftmax+nn.NLLLoss是一样的结果。为什么这样呢,回想下交叉熵的表达式:
其中y是label,x是prediction的结果,所以其实交叉熵损失就是target对应位置的输出结果x再取-log。这个计算过程刚好就是先LogSoftmax()再NLLLoss()。
参考:
https://blog.csdn.net/watermelon1123/article/details/91044856
https://blog.csdn.net/weixin_40522801/article/details/106616295