模型的建立与评估

模型的建立与评估

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.figsize'] = (10, 6)  # 设置输出图片大小
# 读取训练数集
train = pd.read_csv('train.csv')
train.shape

在这里插入图片描述

train.head()

在这里插入图片描述

1. 特征工程

1.1 缺失值填充

  • 对分类变量缺失值:填充某个缺失值字符(NA)、用最多类别的进行填充
  • 对连续变量缺失值:填充均值、中位数、众数
# 对分类变量进行填充
train['Cabin'] = train['Cabin'].fillna('NA')
train['Embarked'] = train['Embarked'].fillna('S')
# 对连续变量进行填充
train['Age'] = train['Age'].fillna(train['Age'].mean())
# 检查缺失值比例
train.isnull().sum().sort_values(ascending=False)

在这里插入图片描述

1.2 编码分类变量

# 取出所有的输入特征
data = train[['Pclass','Sex','Age','SibSp','Parch','Fare', 'Embarked']]
# 进行虚拟变量转换
data = pd.get_dummies(data)
data.head()

在这里插入图片描述

2. 模型搭建

  • 处理完前面的数据我们就得到建模数据,下一步是选择合适模型。
  • 在进行模型选择之前我们需要先知道数据集最终是进行监督学习还是无监督学习,监督学习需要数据有标签。
  • 除了根据我们任务来选择模型外,还可以根据数据样本量以及特征的稀疏性来决定,样本量多可以选择复杂的模型,如深度学习。
  • 刚开始我们总是先尝试使用一个基本的模型来作为其baseline,进而再训练其他模型做对比,最终选择泛化能力或性能比较好的模型。
  • 建模前需要判断数据是否为同一分布,机器学习的基本假设是数据的训练集、验证集和预测集基本属于同一分布。

在这里插入图片描述

2.1 切割训练集和测试集

  • 按比例切割训练集和测试集
  • 按目标变量分层进行等比切割
  • 设置随机种子以便结果能复现
  • 切割数据集是为了后续能评估模型泛化能力
  • sklearn中切割数据集的方法为train_test_split
  • 查看函数文档可以在jupyter noteboo里面使用train_test_split?后回车即可看到

什么情况下切割数据集的时候不用进行随机选取?

  • 时序数据集一般不进行随机选取,而是分段切割,避免用未来的数据预测历史数据,发生数据泄露
  • 当数据类别不均衡时,也不进行随机选取,会采用重采样,以减轻类别不均衡现象。
from sklearn.model_selection import train_test_split
# 一般先取出X和y后再切割,有些情况会使用到未切割的,这时候X和y就可以用
X = data
y = train['Survived']
# 对数据集进行切割
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0)
# 查看数据形状
X_train.shape, X_test.shape

在这里插入图片描述

2.2 模型创建

  • 创建基于线性模型的分类模型(逻辑回归)
  • 创建基于树的分类模型(决策树、随机森林)
  • 查看模型的参数,并更改参数值,观察模型变化

为什么线性模型可以进行分类任务,背后是怎么的数学关系?

使用Sigmoid函数将线性回归的结果转换成0到1之间的数,作为属于某个类别的概率,并用交叉熵作为损失函数。

对于多分类问题,线性模型是怎么进行分类的?

对于多分类问题,把二分类的Sigmoid函数换成Softmax函数,并将二分类交叉熵损失函数扩展为多分类损失函数。

from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
# 默认参数逻辑回归模型
lr = LogisticRegression()
lr.fit(X_train, y_train)
# 查看训练集和测试集score值
print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(lr.score(X_test, y_test)))

在这里插入图片描述

# 默认参数的随机森林分类模型
rfc = RandomForestClassifier()
rfc.fit(X_train, y_train)
print("Training set score: {:.2f}".format(rfc.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(rfc.score(X_test, y_test)))

在这里插入图片描述
这里都只采用了默认模型参数,没有进行调参,可以发现随机森林作为决策树的Bagging集成模型,相比逻辑回归,模型更加复杂和强大,容易对训练数据集过拟合。

2.3 输出模型预测结果

  • 输出模型预测分类标签
  • 输出不同分类标签的预测概率
  • 一般监督模型在sklearn里面有个predict能输出预测标签,predict_proba则可以输出标签概率

预测标签的概率对我们有什么帮助?

预测标签的概率表明模型对于预测结果的确信程度。有了概率,我们可以计算预测标签的信息熵,信息熵越大,说明模型对于预测结果越没有信心,这表明模型的输入可能与训练样本差异过大,从而成为一种异常检测的方法。
我们还可以利用预测标签的概率进行集成学习,比如软投票。

# 预测标签
pred = lr.predict(X_train)
# 此时我们可以看到0和1的数组
pred[:10]

在这里插入图片描述

# 预测标签概率
pred_proba = lr.predict_proba(X_train)
pred_proba[:10]

在这里插入图片描述

3. 模型评估

  • 模型评估是为了知道模型的泛化能力。
  • 交叉验证(cross-validation)是一种评估泛化性能的统计学方法,它比单次划分训练集和测试集的方法更加稳定、全面。
  • 在交叉验证中,数据被多次划分,并且需要训练多个模型。
    最常用的交叉验证是 k 折交叉验证(k-fold cross-validation),其中 k 是由用户指定的数字,通常取 5 或 10。
  • 准确率(precision)度量的是被预测为正例的样本中有多少是真正的正例
  • 召回率(recall)度量的是正类样本中有多少被预测为正类
  • f-分数是准确率与召回率的调和平均

3.1 交叉验证

  • 用10折交叉验证来评估逻辑回归模型
  • 计算交叉验证精度的平均值

在这里插入图片描述

k折越多的情况下会带来什么样的影响?

K折越多,单次训练验证时,用作训练集的数据就会越多,而用作验证集的数据越少。这样平均的结果会更加可靠,但是所耗费的总时间也会增多。

from sklearn.model_selection import cross_val_score
lr = LogisticRegression(C=100)
scores = cross_val_score(lr, X_train, y_train, cv=10)
scores

在这里插入图片描述

# 平均交叉验证分数
print("Average cross-validation score: {:.2f}".format(scores.mean()))

在这里插入图片描述

3.2 混淆矩阵

  • 计算二分类问题的混淆矩阵
  • 计算精确率、召回率以及f-分数

在这里插入图片描述

在这里插入图片描述

from sklearn.metrics import confusion_matrix
lr = LogisticRegression(C=100)
lr.fit(X_train, y_train)
pred = lr.predict(X_train)
confusion_matrix(y_train, pred)

在这里插入图片描述

from sklearn.metrics import classification_report
print(classification_report(y_train, pred))

在这里插入图片描述

3.3 ROC曲线

  • ROC曲线在sklearn中的模块为sklearn.metrics
  • ROC曲线下面所包围的面积越大越好
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_test, lr.decision_function(X_test))
plt.plot(fpr, tpr, label="ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR (recall)")
# 找到最接近于0的阈值
close_zero = np.argmin(np.abs(thresholds))
plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10, label="threshold zero", fillstyle="none", c='k', mew=2)
plt.legend(loc=4)

在这里插入图片描述

参考资料

Datawhale 开源文档:https://github.com/datawhalechina/hands-on-data-analysis
https://gitee.com/datawhalechina/hands-on-data-analysis/tree/master

感谢Datawhale对开源学习的贡献!

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值