Dijkstra求单源最短路径代码模板C++

在写出具体函数之前,需要先定义MAXV为最大顶点数、INF为一个很大的数字:

const int MAXV = 1000;//最大顶点数
const int INF = 1000000000;//设INF是一个很大的数

邻接矩阵版

int n, G[MAXV][MAXV];//n为顶点数,MAXV为最大顶点数
int d[MAXV];//起点到达各点的最短路径长度
bool vis[MAXV] = { false };//标记数组,vis[i]=true表示已访问。初值均为false

void Dijkstra(int s) {//s为起点
	fill(d, d + MAXV, INF);//fill函数将整个数组d赋为INF
	d[s] = 0;//起点s到达自身的距离为0
	for (int i = 0; i < n; i++) {//循环n次
		int u = -1, MIN = INF;//u使d[u]最小,MIN存放该最小的d[u]
		for (int j = 0; j < n; j++) {//找到未访问的顶点中d[]最小的
			if (vis[j] == false && d[j] < MIN) {
				MIN = d[j];
				u = j;
			}
		}
		//找不到小于INF的d[u],说明剩下的顶点和起点s不连通
		if (u == -1) return;
		vis[u] = true;//标记u已访问
		for (int v = 0; v < n; v++) {
			//如果v未访问&&u能到达v&&以u为中介点可以使d[v]更优
			if (vis[v] == false && G[u][v] != INF && d[u] + G[u][v] < d[v]) {
				d[v] = d[u] + G[u][v];//优化d[v]
			}
		}
	}
}

从复杂度来看,主要是外层循环 O ( V ) O(V) O(V)(V就是顶点个数n)与内层循环(寻找最小的d[u]需要 O ( V ) O(V) O(V)、枚举v需要 O ( V ) O(V) O(V)产生的,总复杂度为 O ( V ∗ ( V + V ) ) = O ( V 2 ) O(V*(V+V))=O(V^2) O(V(V+V))=O(V2)

邻接表版

struct Node
{
	int v, dis;//v为边的目标顶点,dis为边权
};

vector<Node> Adj[MAXV];//图G,Adj[u]存放从顶点u出发可以到达的所有顶点,MAXV为最大顶点数
int n;//n为顶点数
int d[MAXV];//起点到达各点的最短路径长度
bool vis[MAXV] = { false };//标记数组,vis[i]=true表示已访问。初值均为false

void Dijkstra(int s) {//s为起点
	fill(d, d + MAXV, INF);//fill函数将整个数组d赋为INF
	d[s] = 0;//起点s到达自身的距离为0
	for (int i = 0; i < n; i++) {//循环n次
		int u = -1, MIN = INF;//u使d[u]最小,MIN存放该最小的d[u]
		for (int j = 0; j < n; j++) {//找到未访问的顶点中d[]最小的
			if (vis[j] == false && d[j] < MIN) {
				MIN = d[j];
				u = j;
			}
		}
		//找不到小于INF的d[u],说明剩下的顶点和起点s不连通
		if (u == -1) return;
		vis[u] = true;//标记u已访问
		//只有下面这个for与邻接矩阵的写法不同
		for (int j = 0; j < Adj[u].size(); j++) {
			int v = Adj[u][j].v;//通过邻接表直接获得u能到达的顶点v
			//如果v未访问&&以u为中介点可以使d[v]更优
			if (vis[v] == false && d[u] + Adj[u][v].dis < d[v]) {
				d[v] = d[u] + Adj[u][v].dis;//优化d[v]
			}
		}
	}
}

从复杂度来看,主要是外层循环 O ( V ) O(V) O(V)与内层循环(寻找最小的d[u]需要 O ( V ) O(V) O(V)、枚举v需要 O ( A d j [ u ] . s i z e ) O(Adj[u].size) O(Adj[u].size)产生的。又由于对整个程序来说,枚举v的次数总共为 O ( E ) O(E) O(E),因此总复杂度为 O ( V 2 + E ) O(V^2+E) O(V2+E)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一匹好人呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值