在写出具体函数之前,需要先定义MAXV为最大顶点数、INF为一个很大的数字:
const int MAXV = 1000;//最大顶点数
const int INF = 1000000000;//设INF是一个很大的数
邻接矩阵版
int n, G[MAXV][MAXV];//n为顶点数,MAXV为最大顶点数
int d[MAXV];//起点到达各点的最短路径长度
bool vis[MAXV] = { false };//标记数组,vis[i]=true表示已访问。初值均为false
void Dijkstra(int s) {//s为起点
fill(d, d + MAXV, INF);//fill函数将整个数组d赋为INF
d[s] = 0;//起点s到达自身的距离为0
for (int i = 0; i < n; i++) {//循环n次
int u = -1, MIN = INF;//u使d[u]最小,MIN存放该最小的d[u]
for (int j = 0; j < n; j++) {//找到未访问的顶点中d[]最小的
if (vis[j] == false && d[j] < MIN) {
MIN = d[j];
u = j;
}
}
//找不到小于INF的d[u],说明剩下的顶点和起点s不连通
if (u == -1) return;
vis[u] = true;//标记u已访问
for (int v = 0; v < n; v++) {
//如果v未访问&&u能到达v&&以u为中介点可以使d[v]更优
if (vis[v] == false && G[u][v] != INF && d[u] + G[u][v] < d[v]) {
d[v] = d[u] + G[u][v];//优化d[v]
}
}
}
}
从复杂度来看,主要是外层循环 O ( V ) O(V) O(V)(V就是顶点个数n)与内层循环(寻找最小的d[u]需要 O ( V ) O(V) O(V)、枚举v需要 O ( V ) O(V) O(V)产生的,总复杂度为 O ( V ∗ ( V + V ) ) = O ( V 2 ) O(V*(V+V))=O(V^2) O(V∗(V+V))=O(V2)。
邻接表版
struct Node
{
int v, dis;//v为边的目标顶点,dis为边权
};
vector<Node> Adj[MAXV];//图G,Adj[u]存放从顶点u出发可以到达的所有顶点,MAXV为最大顶点数
int n;//n为顶点数
int d[MAXV];//起点到达各点的最短路径长度
bool vis[MAXV] = { false };//标记数组,vis[i]=true表示已访问。初值均为false
void Dijkstra(int s) {//s为起点
fill(d, d + MAXV, INF);//fill函数将整个数组d赋为INF
d[s] = 0;//起点s到达自身的距离为0
for (int i = 0; i < n; i++) {//循环n次
int u = -1, MIN = INF;//u使d[u]最小,MIN存放该最小的d[u]
for (int j = 0; j < n; j++) {//找到未访问的顶点中d[]最小的
if (vis[j] == false && d[j] < MIN) {
MIN = d[j];
u = j;
}
}
//找不到小于INF的d[u],说明剩下的顶点和起点s不连通
if (u == -1) return;
vis[u] = true;//标记u已访问
//只有下面这个for与邻接矩阵的写法不同
for (int j = 0; j < Adj[u].size(); j++) {
int v = Adj[u][j].v;//通过邻接表直接获得u能到达的顶点v
//如果v未访问&&以u为中介点可以使d[v]更优
if (vis[v] == false && d[u] + Adj[u][v].dis < d[v]) {
d[v] = d[u] + Adj[u][v].dis;//优化d[v]
}
}
}
}
从复杂度来看,主要是外层循环 O ( V ) O(V) O(V)与内层循环(寻找最小的d[u]需要 O ( V ) O(V) O(V)、枚举v需要 O ( A d j [ u ] . s i z e ) O(Adj[u].size) O(Adj[u].size)产生的。又由于对整个程序来说,枚举v的次数总共为 O ( E ) O(E) O(E),因此总复杂度为 O ( V 2 + E ) O(V^2+E) O(V2+E)。