线上自行车销售业务分析报告

报告详细分析了2019年11月自行车的整体销售、地域销售及产品销售表现。整体销售量和金额有明显环比增长,地域销售中揭示了Top10城市的销售变化,产品销售部分则深入到公路、山地和旅游自行车的细分市场。
摘要由CSDN通过智能技术生成

自行车业务分析报告

目录:

  • 一、自行车整体销售表现
  • 二、2019年11月自行车地域销售表现
  • 三、2019年11月自行车产品销售表现
  • 四、用户行为分析
  • 五、2019年11月热品销售分析

成果
在这里插入图片描述

计算结果存入数据库_对应表名:

  • 自行车整体销售表现:pt_overall_sale_performance_1
  • 2019年11月自行车地域销售表现:pt_bicy_november_territory_2、pt_bicy_november_october_city_3
  • 2019年11月自行车产品销售表现:pt_bicycle_product_sales_month_4、pt_bicycle_product_sales_order_month_4、pt_bicycle_product_sales_order_month_11
  • 用户行为分析:pt_user_behavior_november
  • 2019年11月热品销售分析:pt_hot_products_november
#导入模块
import pandas as pd
import numpy as np
import pymysql
pymysql.install_as_MySQLdb()
from sqlalchemy import create_engine

一、自行车整体销售表现

1.1、从数据库读取源数据:dw_customer_order

engine = create_engine('mysql+pymysql://用户名:密码@106.12.180.221:3306/adventure_ods')
sql_cmd = "select * from dw_customer_order"
gather_customer_order = pd.read_sql(sql=sql_cmd, con=engine)
gather_customer_order.head()
create_date product_name cpzl_zw cplb_zw order_num customer_num sum_amount is_current_year is_last_year is_yesterday is_today is_current_month is_current_quarter chinese_province chinese_city chinese_territory
0 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 吉林省 长春市 东北
1 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 黑龙江省 伊春市 东北
2 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 安徽省 蚌埠市 华东
3 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 江苏省 南通市 华东
4 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 江苏省 宿迁市 华东
#查看源数据前5行,观察数据,判断数据是否正常识别
type(gather_customer_order)
pandas.core.frame.DataFrame
gather_customer_order.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 474071 entries, 0 to 474070
Data columns (total 16 columns):
create_date           474071 non-null object
product_name          474071 non-null object
cpzl_zw               474071 non-null object
cplb_zw               474071 non-null object
order_num             474071 non-null int64
customer_num          474071 non-null int64
sum_amount            474071 non-null float64
is_current_year       474071 non-null object
is_last_year          474071 non-null object
is_yesterday          474071 non-null object
is_today              474071 non-null object
is_current_month      474071 non-null object
is_current_quarter    474071 non-null object
chinese_province      474071 non-null object
chinese_city          474071 non-null object
chinese_territory     474071 non-null object
dtypes: float64(1), int64(2), object(13)
memory usage: 57.9+ MB
#分析create_date的类型
type(gather_customer_order["create_date"].loc[150])
datetime.date
from datetime import datetime
#增加create_year_month月份字段。按月维度分析时使用
gather_customer_order['create_year_month'] = gather_customer_order.create_date.apply(lambda x:x.strftime("%Y-%m"))
type(gather_customer_order.create_year_month.loc[150])
str
type(gather_customer_order)
pandas.core.frame.DataFrame
gather_customer_order
create_date product_name cpzl_zw cplb_zw order_num customer_num sum_amount is_current_year is_last_year is_yesterday is_today is_current_month is_current_quarter chinese_province chinese_city chinese_territory create_year_month
0 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 吉林省 长春市 东北 2019-01
1 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 黑龙江省 伊春市 东北 2019-01
2 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 安徽省 蚌埠市 华东 2019-01
3 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 江苏省 南通市 华东 2019-01
4 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 江苏省 宿迁市 华东 2019-01
5 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 江苏省 淮安市 华东 2019-01
6 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 浙江省 丽水市 华东 2019-01
7 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 福建省 宁德市 华东 2019-01
8 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 福建省 泉州市 华东 2019-01
9 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 广东省 东莞市 华南 2019-01
10 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 陕西省 西安市 西北 2019-01
11 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 青海省 海东市 西北 2019-01
12 2019-01-01 AWC Logo Cap 帽子 服装 1 1 8.99 0 1 0 0 0 0 云南省 昆明市 西南 2019-01
13 2019-01-01 All-Purpose Bike Stand 自行车看台 配件 1 1 159.00 0 1 0 0 0 0 浙江省 湖州市 华东 2019-01
14 2019-01-01 Bike Wash - Dissolver 清洁工 配件 1 1 7.95 0 1 0 0 0 0 吉林省 松原市 东北 2019-01
15 2019-01-01 Bike Wash - Dissolver 清洁工 配件 1 1 7.95 0 1 0 0 0 0 辽宁省 大连市 东北 2019-01
16 2019-01-01 Bike Wash - Dissolver 清洁工 配件 1 1 7.95 0 1 0 0 0 0 山东省 枣庄市 华东 2019-01
17 2019-01-01 Bike Wash - Dissolver 清洁工 配件 1 1 7.95 0 1 0 0 0 0 江西省 上饶市 华中 2019-01
18 2019-01-01 Bike Wash - Dissolver 清洁工 配件 1 1 7.95 0 1 0 0 0 0 湖北省 武汉市 华中 2019-01
19 2019-01-01 Bike Wash - Dissolver 清洁工 配件 1 1 7.95 0 1 0 0 0 0 河北省 廊坊市 华北 2019-01
20 2019-01-01 Bike Wash - Dissolver 清洁工 配件 1 1 7.95 0 1 0 0 0 0 河北省 张家口市 华北 2019-01
21 2019-01-01 Bike Wash - Dissolver 清洁工 配件 1 1 7.95 0 1 0 0 0 0 西藏自治区 那曲市 西南 2019-01
22 2019-01-01 Classic Vest 背心 服装 1 1 63.50 0 1 0 0 0 0 广东省 惠州市 华南 2019-01
23 2019-01-01 Classic Vest 背心 服装 1 1 63.50 0 1 0 0 0 0 云南省 昆明市 西南 2019-01
24 2019-01-01 Fender Set - Mountain 挡泥板 配件 1 1 21.98 0 1 0 0 0 0 山东省 泰安市 华东 2019-01
25 2019-01-01 Fender Set - Mountain 挡泥板 配件 1 1 21.98 0 1 0 0 0 0 山东省 济宁市 华东 2019-01
26 2019-01-01 Fender Set - Mountain 挡泥板 配件 1 1 21.98 0 1 0 0 0 0 山东省 烟台市 华东 2019-01
27 2019-01-01 Fender Set - Mountain 挡泥板 配件 1 1 21.98 0 1 0 0 0 0 江苏省 镇江市 华东 2019-01
28 2019-01-01 Fender Set - Mountain 挡泥板 配件 1 1 21.98 0 1 0 0 0 0 浙江省 舟山市 华东 2019-01
29 2019-01-01 Fender Set - Mountain 挡泥板 配件 1 1 21.98 0 1 0 0 0 0 湖北省 黄冈市 华中 2019-01
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
474041 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 广西壮族自治区 柳州市 华南 2020-10
474042 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 2 2 9.98 1 0 0 1 1 1 广西壮族自治区 贵港市 华南 2020-10
474043 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 海南省 海口市 华南 2020-10
474044 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 2 2 9.98 1 0 0 1 1 1 特别行政区 澳门特别行政区 台港澳 2020-10
474045 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 新疆维吾尔自治区 阿克苏地区 西北 2020-10
474046 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 甘肃省 兰州市 西北 2020-10
474047 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 甘肃省 庆阳市 西北 2020-10
474048 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 自治区 宁夏回族自治区 西北 2020-10
474049 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 陕西省 安康市 西北 2020-10
474050 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 青海省 海东市 西北 2020-10
474051 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 青海省 西宁市 西北 2020-10
474052 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 云南省 文山壮族苗族自治州 西南 2020-10
474053 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 四川省 内江市 西南 2020-10
474054 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 四川省 巴中市 西南 2020-10
474055 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 四川省 成都市 西南 2020-10
474056 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 四川省 自贡市 西南 2020-10
474057 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 山东省 昆明市 西南 2020-10
474058 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 直辖市 重庆市 西南 2020-10
474059 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 2 2 9.98 1 0 0 1 1 1 西藏自治区 山南市 西南 2020-10
474060 2020-10-02 Water Bottle - 30 oz. 瓶子和笼子 配件 1 1 4.99 1 0 0 1 1 1 黑龙江省 黑河市 西南 2020-10
474061 2020-10-02 Women's Mountain Shorts 短裤 服装 1 1 69.99 1 0 0 1 1 1 辽宁省 盘锦市 东北 2020-10
474062 2020-10-02 Women's Mountain Shorts 短裤 服装 1 1 69.99 1 0 0 1 1 1 黑龙江省 黑河市 东北 2020-10
474063 2020-10-02 Women's Mountain Shorts 短裤 服装 1 1 69.99 1 0 0 1 1 1 安徽省 宣城市 华东 2020-10
474064 2020-10-02 Women's Mountain Shorts 短裤 服装 1 1 69.99 1 0 0 1 1 1 安徽省 淮北市 华东 2020-10
474065 2020-10-02 Women's Mountain Shorts 短裤 服装 1 1 69.99 1 0 0 1 1 1 江苏省 南通市 华东 2020-10
474066 2020-10-02 Women's Mountain Shorts 短裤 服装 1 1 69.99 1 0 0 1 1 1 河南省 郑州市 华中 2020-10
474067 2020-10-02 Women's Mountain Shorts 短裤 服装 1 1 69.99 1 0 0 1 1 1 直辖市 天津市 华北 2020-10
474068 2020-10-02 Women's Mountain Shorts 短裤 服装 1 1 69.99 1 0 0 1 1 1 广东省 云浮市 华南 2020-10
474069 2020-10-02 Women's Mountain Shorts 短裤 服装 1 1 69.99 1 0 0 1 1 1 青海省 西宁市 西北 2020-10
474070 2020-10-02 Women's Mountain Shorts 短裤 服装 1 1 69.99 1 0 0 1 1 1 贵州省 六盘水市 西南 2020-10

474071 rows × 17 columns

#筛选产品类别为自行车的数据
gather_customer_order = gather_customer_order[(gather_customer_order["cplb_zw"] == "自行车")]
gather_customer_order
create_date product_name cpzl_zw cplb_zw order_num customer_num sum_amount is_current_year is_last_year is_yesterday is_today is_current_month is_current_quarter chinese_province chinese_city chinese_territory create_year_month
150 2019-01-01 Mountain-100 Silver 山地自行车 自行车 1 1 3399.9900 0 1 0 0 0 0 安徽省 马鞍山市 华东 2019-01
151 2019-01-01 Mountain-100 Silver 山地自行车 自行车 1 1 3399.9900 0 1 0 0 0 0 西藏自治区 拉萨市 西南 2019-01
152 2019-01-01 Mountain-200 Black 山地自行车 自行车 1 1 2294.9900 0 1 0 0 0 0 山东省 济南市 华东 2019-01
153 2019-01-01 Mountain-200 Black 山地自行车 自行车 1 1 2049.0982 0 1 0 0 0 0 山东省 潍坊市 华东 2019-01
154 2019-01-01 Mountain-200 Black 山地自行车 自行车 1 1 2294.9900 0 1 0 0 0 0 江苏省 镇江市 华东 2019-01
155 2019-01-01 Mountain-200 Black 山地自行车 自行车 1 1 2049.0982 0 1 0 0 0 0 陕西省 西安市 西北 2019-01
156 2019-01-01 Mountain-200 Black 山地自行车 自行车 1 1 2294.9900 0 1 0 0 0 0 自治区 西藏自治区 西南 2019-01
157 2019-01-01 Mountain-200 Black 山地自行车 自行车 1 1 2294.9900 0 1 0 0 0 0 贵州省 贵阳市 西南 2019-01
158 2019-01-01 Mountain-200 Silver 山地自行车 自行车 1 1 2319.9900 0 1 0 0 0 0 辽宁省 大连市 东北 2019-01
159 2019-01-01 Mountain-200 Silver 山地自行车 自行车 1 1 2319.9900 0 1 0 0 0 0 安徽省 亳州市 华东 2019-01
160 2019-01-01 Mountain-200 Silver 山地自行车 自行车 1 1 2071.4196 0 1 0 0 0 0 江苏省 常州市 华东 2019-01
161 2019-01-01 Mountain-200 Silver 山地自行车 自行车 1 1 2319.9900 0 1 0 0 0 0 江苏省 连云港市 华东 2019-01
162 2019-01-01 Mountain-200 Silver 山地自行车 自行车 1 1 2071.4196 0 1 0 0 0 0 浙江省 金华市 华东 2019-01
163 2019-01-01 Mountain-200 Silver 山地自行车 自行车 1 1 2319.9900 0 1 0 0 0 0 河南省 南阳市 华中 2019-01
164 2019-01-01 Mountain-200 Silver 山地自行车 自行车 1 1 2319.9900 0 1 0 0 0 0 河北省 石家庄市 华北 2019-01
165 2019-01-01 Mountain-200 Silver 山地自行车 自行车 1 1 2319.9900 0 1 0 0 0 0 直辖市 北京市 华北 2019-01
166 2019-01-01 Mountain-200 Silver 山地自行车 自行车 2 2 4391.4096 0 1 0 0 0 0 广西壮族自治区 贵港市 华南 2019-01
167 2019-01-01 Mountain-200 Silver 山地自行车 自行车 1 1 2319.9900 0 1 0 0 0 0 陕西省 西安市 西北 2019-01
168 2019-01-01 Mountain-200 Silver 山地自行车 自行车 1 1 2319.9900 0 1 0 0 0 0 云南省 大理白族自治州 西南 2019-01
169 2019-01-01 Mountain-200 Silver 山地自行车 自行车 1 1 2319.9900 0 1 0 0 0 0 云南省 曲靖市 西南 2019-01
170 2019-01-01 Mountain-400-W Silver 山地自行车 自行车 1 1 769.4900 0 1 0 0 0 0 辽宁省 葫芦岛市 东北 2019-01
171 2019-01-01 Mountain-400-W Silver 山地自行车 自行车 1 1 769.4900 0 1 0 0 0 0 山东省 聊城市 华东 2019-01
172 2019-01-01 Mountain-400-W Silver 山地自行车 自行车 1 1 769.4900 0 1 0 0 0 0 内蒙古自治区 呼和浩特市 华北 2019-01
173 2019-01-01 Mountain-400-W Silver 山地自行车 自行车 1 1 769.4900 0 1 0 0 0 0 西藏自治区 日喀则市 西南 2019-01
174 2019-01-01 Mountain-500 Black 山地自行车 自行车 1 1 539.9900 0 1 0 0 0 0 安徽省 滁州市 华东 2019-01
175 2019-01-01 Mountain-500 Black 山地自行车 自行车 1 1 539.9900 0 1 0 0 0 0 直辖市 天津市 华北 2019-01
176 2019-01-01 Mountain-500 Silver 山地自行车 自行车 1 1 564.9900 0 1 0 0 0 0 山东省 淄博市 华东 2019-01
228 2019-01-01 Road-150 Red 公路自行车 自行车 1 1 3578.2700 0 1 0 0 0 0 吉林省 松原市 东北 2019-01
229 2019-01-01 Road-150 Red 公路自行车 自行车 1 1 3578.2700 0 1 0 0 0 0 辽宁省 丹东市 东北 2019-01
230 2019-01-01 Road-150 Red 公路自行车 自行车 1 1 3578.2700 0 1 0 0 0 0 江苏省 泰州市 华东 2019-01
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
473854 2020-10-02 Road-750 Black 公路自行车 自行车 1 1 539.9900 1 0 0 1 1 1 江西省 新余市 华中 2020-10
473855 2020-10-02 Road-750 Black 公路自行车 自行车 1 1 539.9900 1 0 0 1 1 1 江西省 鹰潭市 华中 2020-10
473856 2020-10-02 Road-750 Black 公路自行车 自行车 1 1 539.9900 1 0 0 1 1 1 湖北省 武汉市 华中 2020-10
473857 2020-10-02 Road-750 Black 公路自行车 自行车 1 1 539.9900 1 0 0 1 1 1 山西省 临汾市 华北 2020-10
473858 2020-10-02 Road-750 Black 公路自行车 自行车 1 1 539.9900 1 0 0 1 1 1 广东省 广州市 华南 2020-10
473859 2020-10-02 Road-750 Black 公路自行车 自行车 1 1 539.9900 1 0 0 1 1 1 甘肃省 定西市 西北 2020-10
473860 2020-10-02 Road-750 Black 公路自行车 自行车 1 1 539.9900 1 0 0 1 1 1 云南省 大理白族自治州 西南 2020-10
473980 2020-10-02 Touring-1000 Blue 旅游自行车 自行车 1 1 2384.0700 1 0 0 1 1 1 江苏省 宿迁市 华东 2020-10
473981 2020-10-02 Touring-1000 Blue 旅游自行车 自行车 1 1 2384.0700 1 0 0 1 1 1 江西省 九江市 华中 2020-10
473982 2020-10-02 Touring-1000 Yellow 旅游自行车 自行车 1 1 2384.0700 1 0 0 1 1 1 辽宁省 葫芦岛市 东北 2020-10
473983 2020-10-02 Touring-1000 Yellow 旅游自行车 自行车 1 1 2384.0700 1 0 0 1 1 1 辽宁省 阜新市 东北 2020-10
473984 2020-10-02 Touring-1000 Yellow 旅游自行车 自行车 1 1 2384.0700 1 0 0 1 1 1 山东省 临沂市 华东 2020-10
473985 2020-10-02 Touring-1000 Yellow 旅游自行车 自行车 1 1 2384.0700 1 0 0 1 1 1 山东省 烟台市 华东 2020-10
473986 2020-10-02 Touring-1000 Yellow 旅游自行车 自行车 1 1 2384.0700 1 0 0 1 1 1 江苏省 南通市 华东 2020-10
473987 2020-10-02 Touring-1000 Yellow 旅游自行车 自行车 1 1 2384.0700 1 0 0 1 1 1 江苏省 常州市 华东 2020-10
473988 2020-10-02 Touring-1000 Yellow 旅游自行车 自行车 1 1 2384.0700 1 0 0 1 1 1 浙江省 嘉兴市 华东 2020-10
473989 2020-10-02 Touring-1000 Yellow 旅游自行车 自行车 1 1 2384.0700 1 0 0 1 1 1 河北省 张家口市 华北 2020-10
473990 2020-10-02 Touring-1000 Yellow 旅游自行车 自行车 1 1 2384.0700 1 0 0 1 1 1 广西壮族自治区 贵港市 华南 2020-10
473991 2020-10-02 Touring-1000 Yellow 旅游自行车 自行车 1 1 2384.0700 1 0 0 1 1 1 新疆维吾尔自治区 吐鲁番市 西北 2020-10
473992 2020-10-02 Touring-1000 Yellow 旅游自行车 自行车 1 1 2384.0700 1 0 0 1 1 1 云南省 德宏傣族景颇族自治州 西南 2020-10
473993 2020-10-02 Touring-1000 Yellow 旅游自行车 自行车 1 1 2384.0700 1 0 0 1 1 1 云南省 怒江傈僳族自治州 西南 2020-10
473994 2020-10-02 Touring-1000 Yellow 旅游自行车 自行车 1 1 2384.0700 1 0 0 1 1 1 云南省 曲靖市 西南 2020-10
473995 2020-10-02 Touring-2000 Blue 旅游自行车 自行车 1 1 1214.8500 1 0 0 1 1 1 内蒙古自治区 包头市 华北 2020-10
473996 2020-10-02 Touring-2000 Blue 旅游自行车 自行车 1 1 1214.8500 1 0 0 1 1 1 内蒙古自治区 鄂尔多斯市 华北 2020-10
473997 2020-10-02 Touring-2000 Blue 旅游自行车 自行车 1 1 1214.8500 1 0 0 1 1 1 甘肃省 兰州市 西北 2020-10
473998 2020-10-02 Touring-2000 Blue 旅游自行车 自行车 1 1 1214.8500 1 0 0 1 1 1 陕西省 商洛市 西北 2020-10
473999 2020-10-02 Touring-2000 Blue 旅游自行车 自行车 1 1 1214.8500 1 0 0 1 1 1 云南省 西双版纳傣族自治州 西南 2020-10
474000 2020-10-02 Touring-3000 Blue 旅游自行车 自行车 1 1 742.3500 1 0 0 1 1 1 河北省 廊坊市 华北 2020-10
474001 2020-10-02 Touring-3000 Yellow 旅游自行车 自行车 1 1 742.3500 1 0 0 1 1 1 河南省 新乡市 华中 2020-10
474002 2020-10-02 Touring-3000 Yellow 旅游自行车 自行车 1 1 742.3500 1 0 0 1 1 1 湖北省 武汉市 华中 2020-10

124248 rows × 17 columns

1.2、自行车整体销售量表现

#每月订单数量和销售金额,用groupby创建一个新的对象,需要将order_num、sum_amount求和
overall_sales_performance = gather_customer_order.groupby("create_year_month").agg({
   "order_num":"sum",
                                                                                    "sum_amount":"sum"}).sort_values(by='create_year_month', ascending=False).reset_index()

#按日期降序排序,方便计算环比
overall_sales_performance.head()
create_year_month order_num sum_amount
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值