PyTorch搭建卷积神经网络(CNN)实现手写数字识别

1.卷积神经网络介绍

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)” 

2.卷积神经网络架构 

卷积神经网络主要包括卷积层,采样层(一般做最大池化)和全连接层(FC层)。

3.Pytorch实现卷积神经网络 

  • 卷积层:nn.Conv2d() 

其参数如下:

  • 池化层:nn.MaxPool2d()

其参数如下: 

4.实现MINST手写数字识别

一共定义了五层,其中两层卷积层,两层池化层,最后一层为FC层进行分类输出。其网络结构如下:

 具体的图片大小计算如下图:

 5.代码实现

import torch
from torchvision import transforms  # 是一个常用的图片变换类
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F

batch_size = 64
transform = transforms.Compose(
    [
        transforms.ToTensor(),  # 把数据转换成张量
        transforms.Normalize((0.1307,), (0.3081,))  # 0.1307是均值,0.3081是标准差
    ]
)
train_dataset = datasets.MNIST(root='../dataset/mnist',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(train_dataset,
                          shuffle=True,
                          batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(test_dataset,
                         shuffle=True,
                         batch_size=batch_size)


class CNN(torch.nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.layer1 = torch.nn.Sequential(
            torch.nn.Conv2d(1, 25, kernel_size=3),
            torch.nn.BatchNorm2d(25),
            torch.nn.ReLU(inplace=True)
        )

        self.layer2 = torch.nn.Sequential(
            torch.nn.MaxPool2d(kernel_size=2, stride=2)
        )

        self.layer3 = torch.nn.Sequential(
            torch.nn.Conv2d(25, 50, kernel_size=3),
            torch.nn.BatchNorm2d(50),
            torch.nn.ReLU(inplace=True)
        )

        self.layer4 = torch.nn.Sequential(
            torch.nn.MaxPool2d(kernel_size=2, stride=2)
        )

        self.fc = torch.nn.Sequential(
            torch.nn.Linear(50 * 5 * 5, 1024),
            torch.nn.ReLU(inplace=True),
            torch.nn.Linear(1024, 128),
            torch.nn.ReLU(inplace=True),
            torch.nn.Linear(128, 10)
        )

    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = x.view(x.size(0), -1)  # 在进入全连接层之前需要把数据拉直Flatten
        x = self.fc(x)
        return x


model = CNN()
# 下面两行代码主要是如果有GPU那么就使用GPU跑代码,否则就使用cpu。cuda:0表示第1块显卡
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")  # 将数据放在GPU上跑所需要的代码
model.to(device)  # 将数据放在GPU上跑所需要的代码
criterion = torch.nn.CrossEntropyLoss()  # 使用交叉熵损失
optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.5)  # momentum表示冲量,冲出局部最小


def train(epochs):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)  # 将数据放在GPU上跑所需要的代码
        optimizer.zero_grad()
        # 前馈+反馈+更新
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:  # 不让他每一次小的迭代就输出,而是300次小迭代再输出一次
            print('[%d,%5d] loss:%.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0
    torch.save(model, 'model_{}.pth'.format(epochs))


def test():
    correct = 0
    total = 0
    with torch.no_grad():  # 下面的代码就不会再计算梯度
        for data in test_loader:
            inputs, target = data
            inputs, target = inputs.to(device), target.to(device)  # 将数据放在GPU上跑所需要的代码
            outputs = model(inputs)
            _, predicted = torch.max(outputs.data, dim=1)  # _为每一行的最大值,predicted表示每一行最大值的下标
            total += target.size(0)
            correct += (predicted == target).sum().item()
    print('Accuracy on test set:%d %%' % (100 * correct / total))


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

 6.结果

         

  • 15
    点赞
  • 97
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,让我们开始。首先,需要准备 MNIST 数据集。可以使用 PyTorch 内置的 torchvision.datasets 库来下载并加载数据集。 ```python import torch import torchvision import torchvision.transforms as transforms transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=2) ``` 接下来,我们可以定义我们的卷积神经网络模型。这里我们定义了两个卷积层和两个全连接层。 ```python import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output net = Net() ``` 接下来,我们可以定义损失函数和优化器。在这个例子中,我们使用交叉熵损失函数和随机梯度下降优化器。 ```python import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) ``` 现在,我们可以开始训练我们的模型。在每个 epoch 中,我们将遍历整个训练集,并使用随机梯度下降进行优化。此外,我们还将计算模型在测试集上的准确率。 ```python for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: # 每 100 个 mini-batches 输出一次损失 print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) ``` 训练完成后,我们可以保存模型并测试它在新数据上的性能。 ```python PATH = './cnn.pth' torch.save(net.state_dict(), PATH) net = Net() net.load_state_dict(torch.load(PATH)) # 测试 dataiter = iter(testloader) images, labels = dataiter.next() outputs = net(images) _, predicted = torch.max(outputs, 1) print('Predicted: ', ' '.join('%5s' % predicted[j] for j in range(10))) ``` 恭喜你,现在你已经成功地使用 PyTorch 搭建了一个卷积神经网络,并且能够对手写数字进行识别!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值